Speaker:
Runze Li, Penn State University

Title:
Variable Selection in Semiparametric Regression Modeling         

Abstract:
Variable selection for semiparametric regression models consists of two components: model selection for nonparametric components and selection of significant variables for parametric portion. Thus, it is much more challenging than that for parametric models such as linear models and generalized linear models because traditional variable selection procedures including stepwise regression and the best subset selection require model selection to nonparametric components for each submodel. This leads to very heavy computational burden. In this talk, I'll propose a class of variable selection procedures for semiparametric regression models using nonconcave penalized likelihood. The newly proposed procedures are distinguished from the traditional ones in that they delete insignificant variables and estimate the coefficients of significant variables simultaneously. This allows us to establish the sampling properties of the resulting estimate. We first establish the rate of convergence of the resulting estimate. With proper choices of penalty functions and regularization parameters, we then establish the asymptotic normality of the resulting estimate, and further demonstrate that the proposed procedures perform as well as an oracle procedure. Semiparametric generalized likelihood ratio test is proposed to select significant variables in the nonparametric component. We investigate the asymptotic behavior of the proposed test and demonstrate its limiting null distribution follows a chi-squared distribution, which is independent of the nuisance parameters. Extensive Monte Carlo simulation studies are conducted to examine the finite sample performance of the proposed variable selection procedures.