AS/SC/MATH3190.03
Set Theory and Foundations of Mathematics
Set theory was created almost singlehandedly by Cantor in the latter
part of the 19th century. Cantor's motivation came from analysis, in
particular the problem of representability of functions by Fourier series.
Set Theory maintained its close connection with analysis but in time
became an autonomous subject. Paradoxes in set theory appeared in the
early 20th century, leading in due course to the subject's axiomatization.
Set theory began to serve as the foundation and language for much of
mathematics. (For example, the fundamental concepts of relation and function
are rigorously defined in terms of sets.) But it has also evolved into a
flourishing discipline in its own right. Moreover, some of the groundbreaking
results it has established in this century (e.g., Godel's Incompleteness
Theorems, Cohen's Independence results) have had farreaching philosophical
implications.
The main points in the historical account of set theory sketched
above will serve as guideposts around which to structure the course. Thus,
the origins of set theory will be touched on, followed by the "naive"
development of some of its main notions, including cardinal and ordinal
arithmetic, well ordering, and the axiom of choice. Several paradoxes in
set theory will be noted, followed by an outline of the axiomatization of
set theory. It will then be shown how this leads to a rigorous development
of some of the basic notions of mathematics such as function and the natural
numbers. Issues in the philosophy of mathematics, including formalism,
intuitionism, and logicism, the problems of consistency, and Godel's theorems
will also be discussed.
The final grade will be based on assignments and tests (60%) and a
final exam (40%).
The text for the course has not yet been determined.

Prerequisites: MATH 2222.03, or MATH 2022.03, or both MATH 2090.03 and
MATH2320.03.

Coordinator: I. Kleiner