YorkU Home
Department of Mathematics & Statistics
Phone: (416)-736-5250
Fax: (416)-736-5257

Course Outline

MATH 3330 A Fall 2001

Taught by: Professor Gene Denzel

Office: N615 Ross

Office Hours: M,W 9-10 and M 3:30-4:30, or by appointment

Email: Gene.Denzel@mathstat.yorku.ca

Web page: http://www.yorku.ca/lezned

Prerequisites: One of AS/SC/AK/MATH 2131 3.0, AS/SC/AK/MATH 2570 3.0, AS/SC/PSYC 2020 6.0, or equivalent; some acquaintance with matrix algebra (such as is provided in AS/SC/AK/MATH 1021 3.0, AS/SC/MATH 1025 3.0, AS/SC/MATH 1505 6.0, AS/AK/MATH 1550 6.0, AS/SC/MATH 2021 3.0, or AS/SC/AK/MATH 2221 3.0). Exclusions: AS/SC/MATH 3033 3.0, AS/SC/GEOG 3421 3.0, AS/SC/PSYC 3030 6.0, AS/ECON 4210 3.0, AK/PSYC 3110 3.0.

Text: Applied Regression Analysis and Other Multivariable Methods, by Kleinbaum, Kupper, Muller, and Nizam (3rd Edition), Duxbury 1998.

Course content:

The course is intended as a thorough introduction to the use of linear models in statistical analysis, for students who have had at least two terms of statistics. We will be focussing on situations where we have one dependent variable and one or more explanatory variables. The material covered will be drawn from the textbook (see more details below), supplemented by some material from other sources. The emphasis will be on the use of the models in question for helping in the analysis of data, not on theoretical derivations.

Prerequisites:

All students will be assumed to be familiar with elenentary statistical concepts, such as are covered in MA2560-2570. Familiarity with the basic concepts of vectors and matrices is also assumed. (A review of relevant material on vectors and matrices is contained in Appendix B of the text.)

Computing:

Students will be expected to use available computing resources, primarily the Gauss Lab (S110 Ross), or the labs in the Maclaughlin College. Details about computing in these labs (the AML labs) should be obtained from the lab manual handed out in class. Accounts for these labs and the phoenix and Gauss servers can be obtained through MAYA (a.k.a. "Passport York"). For those students who have computers available elsewhere, and need to dial in through a modem, an account on York's high-speed modem pool should also be obtained. (There is a small monthly charge for use of this service.) Printing services are available in the Gauss Lab or in Steacie. There are many statistical programs which could be used for much of the work in this course. We will mostly present sample programs and solutions using SAS, as does the textbook. All assignments, datasets, solutions, hints, other references, test results, etc. will be available only through the course web pages. Students are encouraged to communicate with each other and the instructor via email. To facilitate this, we will make use of a 3330 FORUM, which can be found at this location.

Evaluation:

Students will be expected to turn in assignments roughly bi- weekly. There will be a penalty for late assignments.
There will be 5 roughly bi-weekly quizzes based on material covered in the assignments and in class. There will also be a project, due at the end of term, involving the analysis of a set of data and the preparation of a report. The practical application of statistics often involves working as part of a research team, and so it is recommended that you work in small groups ( absolutely no more than 3 in a group), both for the project and for assignments. (It is acceptable for groups to hand in a single assignment, and project.) There will also be a midterm and a final exam. You will be allowed to use a small set of tables and notes/formulas for all tests (the exact number of pages to be detailed in class), but otherwise they will be closed book affairs. The breakdown of the grading is as follows:

Assignments:15%
Project: 05%
Quizzes: 25% (best 4 out of 5 will count)
Midterm: 20%
Final Ex.: 35%

Outline of coverage from textbook:

Chapters 1-16, with some omissions of particular topics.

 

For a schedule of course events please see here.