1. New Stuff

Definition 1.1. Let \mathbb{A} be a Banach algebra and define the amenability character of \mathbb{A} to be the least cardinal of a family of a directed set D such that

1. There is a mapping $\Delta : D \to \mathbb{A} \otimes \mathbb{A}$ such that for each $a \in \mathbb{A}$ $\lim_{d \in D} a\Delta(d) - \Delta(d)a = 0$

2. if $\mu : \mathbb{A} \times \mathbb{A} \to \mathbb{A}$ is the natural multiplication functional then $\{\mu(\Delta(d))\}_{d \in D}$ is an approximate identity for \mathbb{A}.

Provided that such a directed set exists at all.

Lemma 1.1 (B. Johnston). Let \mathbb{A} and \mathbb{B} be a Banach algebras and $u \in \mathbb{A} \otimes \mathbb{B}$. If there are $\{\psi_i\}_{i=1}^k \subseteq \mathbb{A}^*$ and $\{\varphi_j\}_{j=1}^k \subseteq \mathbb{B}^*$ such that

$$\psi_n \otimes \varphi_m(u) = \begin{cases} 0 & \text{if } n > m \\ 1 & \text{if } n \leq m \end{cases}$$

then $\|u\| \geq \ln(2k - 1)/8\pi$.

Proposition 1.1. A compact Hausdorff space X is metrizable if and only if the amenability character of $C(X)$ is countable.

Proof. If X is metrizable then it is second countable and a partition of unity argument yields that the amenability character of $C(X)$ is countable.

On the other hand, suppose that X is not metrizable but that there is a mapping $\Delta : D \to \mathbb{A} \otimes \mathbb{A}$ witnessing that the amenability character of $C(X)$ is countable. Let

$$\mathcal{F} = \bigcup_{d \in D} \left\{ \{f_i\}_{i=1}^k \cup \{g_i\}_{i=1}^k \right| \Delta(d) = \sum_{j=1}^k f_i \otimes g_j \right\}$$

and let $\mathcal{B} = \{f^{-1}B_r(q) \mid r \in \mathbb{Q} \text{ and } q \in \mathbb{Q}\sqrt{-1}\}$. Since \mathcal{B} is not a base for X and X is compact, there must be some distinct x_0 and x_1 in X such that $x_0 \in U$ if and only if $x_1 \in U$ for all $U \in \mathcal{B}$.

Let $\psi_j \in C(X)^*$ be defined by $\psi_j(f) = f(x_j)$. Let $\varphi_0 = \psi_1$ and $\varphi_1 = \psi_0 + \psi_1$. Now, using the fact that X is regular it is possible to choose a continuous function $w : X \to \mathbb{R}$ such that $w(x_j) = j$. It suffices to check that

$$\lim_{d \in D} \psi_n \otimes \varphi_m(w\Delta(d) - \Delta(d))w = \begin{cases} 0 & \text{if } n = 1 \text{ and } m = 0 \\ 1 & \text{otherwise}. \end{cases}$$

To see this let $\epsilon > 0$ and choose $d_0 \in D$ such that $\|\mu(\Delta(d)) - 1\|_{\sup} < \epsilon$ for all $d \geq d_0$.

Now for $d \geq d_0$ suppose that $\Delta(d) = \sum_{j=1}^k f_j \otimes g_j$. Then

$$\psi_m \otimes \psi_n(w\Delta(d) - \Delta(d))w = \psi_m \otimes \psi_n \left(\sum_{j=1}^k w f_j \otimes g_j - \sum_{j=1}^k f_j \otimes wg_j \right) = \sum_{j=1}^k \psi_m(wf_j)\psi_n(g_j) - \sum_{j=1}^k \psi_m(f_j)\psi_n(wg_j)$$

and this implies that

$$\psi_0 \otimes \psi_0(w\Delta(d) - \Delta(d))w = \sum_{j=1}^k f_j(x_0)g_j(x_0) - \sum_{j=1}^k f_j(x_0)g_j(x_0) = 0$$

and similarly $\psi_1 \otimes \psi_1(w\Delta(d) - \Delta(d))w = 0$. Also

$$\psi_0 \otimes \psi_1(w\Delta(d) - \Delta(d))w = \sum_{j=1}^k f_j(x_0)g_j(x_1) - \sum_{j=1}^k f_j(x_0)g_j(x_0)$$

because $g_j(x_0) = g_j(x_1)$ for all j. Similarly $\psi_1 \otimes \psi_0(w\Delta(d) - \Delta(d))w = \sum_{j=1}^k f_j(x_1)g_j(x_1)$. Note that $\sum_{j=1}^k f_j(x_j)g_j(x_j) = \mu(\Delta(d)(x_j))$ and $\lim_{d \in D} \mu(\Delta(d)(x_j)) = 1$. Hence

$$\lim_{d \in D} \psi_0 \otimes \psi_0(w\Delta(d) - \Delta(d))w = \lim_{d \in D} \psi_0 \otimes \psi_1(w\Delta(d) - \Delta(d))w = 1$$

$$\lim_{d \in D} \psi_0 \otimes \psi_1(w\Delta(d) - \Delta(d))w = \lim_{d \in D} (\psi_0 + \psi_1)(w\Delta(d) - \Delta(d))w = 1$$

$$\lim_{d \in D} \psi_1 \otimes \psi_1(w\Delta(d) - \Delta(d))w = \lim_{d \in D} (\psi_0 + \psi_1)(w\Delta(d) - \Delta(d))w = 1$$

$$\lim_{d \in D} \psi_1 \otimes \psi_0(w\Delta(d) - \Delta(d))w = \lim_{d \in D} \psi_1 \otimes \psi_1(w\Delta(d) - \Delta(d))w = 0$$

as required. \qed
2. Old stuff

Question 2.1. Given a Banach space \(B \) and the natural embedding of \(B \) into \(B^{**} \), does the hypothesis that every element of \(B^{**} \) is in the weak*-closure of a countable subset of \(B \) imply that \(B \) is separable?

Note that the converse is immediate since \(B \) is weak* dense in \(B^{**} \). Also, I guess that non-separable, reflexive \(B \) are not of interest.

Proposition 2.1. If \(\kappa \) is uncountable, then \(L_1(2^\kappa)^{**} \) contains elements not in the closure of any countable subset of \(L_1(2^\kappa) \).

Proof. Recall that \(L_1(2^\kappa)^* \) is not separable. Let \(\mathcal{F} \) be any ultrafilter on \(2^\kappa \) containing the complement of any null set and let \(\Phi_F \in L_1(2^\kappa)^* \) be defined by

\[
\{ \langle \Phi_F, [f] \rangle \} = \bigcap_{A \in \mathcal{F}} f(A)
\]

where \([f]\) denotes the \(L_1(2^\kappa) \) equivalence class of the function \(f \). Note that \(\langle \Phi_F, [f] \rangle \) does not depend on the choice of \(f \) since \(\mathcal{F} \) contains no null set.

Now suppose that \(\mathcal{F} \) is a countable subset of \(L_1(2^\kappa) \) whose weak*-closure contains \(\Phi_F \). It is possible to find a countable \(\Gamma \subseteq \kappa \) and a countable family \(\mathcal{L} \) of measurable functions on \(2^\kappa \) such that \(\mathcal{L} = \{ g \circ \pi \} \) where \(\pi \) is the projection from \(2^\kappa \) to \(2^\Gamma \).

Choose \(\xi \in \kappa \setminus \Gamma \) and let \(U^i_\xi = \{ h \in 2^\kappa \ | \ h(\xi) = i \} \). Let \(H^i \) be the characteristic function of \(U^i_\xi \). Without loss of generality \(\langle \Phi_F, H^i \rangle = 0 \). However

\[
\langle H^i, [g \circ \pi] \rangle = \int_{x \in U^i_\xi} g(x) d\lambda(x) = \int_{x \in 2^\kappa} g(x) d\lambda(x)/2
\]

and so \(\langle H^0, [g \circ \pi] \rangle = \langle H^1, [g \circ \pi] \rangle \). In other words, the weak* neighbourhood of \(\Phi_F \) consisting of all \(\Psi \) such that \(|\langle \Psi, H^i \rangle \rangle - i| < 1/3 \) contains no member of \(\mathcal{L} \).

Proposition 2.2. If \(X \) is a compact Hausdorff space then the following are equivalent:

1. \(X \) is metrizable
2. Every element of \(C(X)^{**} \) is in the weak*-closure of a countable subset of \(C(X) \).

Proof. If \(X \) is metrizable then \(C(X)^* \) is separable in the norm topology and, hence, also in the weak*-topology. Since \(B \) is always weak* dense in \(B^{**} \) it follows that (1) implies (2).

For the other direction, begin by recalling that \(C(X)^* \) is the space of all countably additive, Borel measures on \(X \) and this can be decomposed in the space of atomic measures and the diffuse measures. The space of atomic measures is the same as \(\ell_1(X) \) where \(X \) is considered as a discrete set. Hence \(C(X)^* = \ell_1(X) \oplus D \) and so \(C(X)^{**} = \ell_1(X)^* \oplus D^* = \ell_\infty(X) \oplus D^* \). Hence it is sufficient to find a subsets \(A \subseteq X \) such that \(\chi_A \) is not in the weak* closure of any countable subset of \(\mathcal{C}(X) \).

Note that for \(\chi_A \) to be in the weak* closure of a subset \(W \subseteq C(X) \) it must be that for any finitely many functions \(\mu_1, \mu_2, \ldots, \mu_k \in \ell_1(X) \) and any \(\epsilon > 0 \) there is \(w \in W \) such that \(|\langle \chi_A, \mu_i \rangle - \langle \mu_i, w \rangle| < \epsilon \). But \(\langle \chi_A, \mu_i \rangle = \sum_{A \in E} \mu_i(a) \) and \(\langle \mu_i, w \rangle = \sum_{x \in X} \mu_i(x) w(x) \). Since the functions \(\mu_i \) are in \(\ell_1(X) \) and \(\epsilon > 0 \) it must be that all but finitely many values of \(\mu_i \) are much less than \(\epsilon/\|w\| \). Hence the following are equivalent:

- \(\chi_A \) is in the weak* closure of \(W \)
- Any finitely many points \(x_1, x_2, \ldots, x_n \) in \(X \)

\[
| \sum_{i=1}^n \sum_{j=1}^k \mu_i(x_j) w(x_j) - \sum_{i=1}^n \sum_{j=1}^k \mu_i(x_j) \chi_A(x_j) | < \epsilon
\]

- (letting \(r_j = \sum_{i=1}^k \mu_i(x_j) \) in the above) for finitely many points \(x_1, x_2, \ldots, x_n \) in \(X \) and scalars \(r_1, r_2, \ldots, r_k \) the following holds

\[
| \sum_{j=1}^n r_j (w(x_j) - \chi_A(x_j)) | < \epsilon
\]

- \(\chi_A \) is in the pointwise closure of \(W \).

It will be shown that there is an \(A \subseteq X \) for which this is not true. First suppose that \(X \) is not first countable and let \(x \in X \) have no countable neighbourhood base. Given a countable family \(C \subseteq C(X) \) choose for each \(n \) and \(f \in C \) a neighbourhood \(U_{n,f} \) of \(x \) such that \(|f(y) - f(x)| < 1/n \) for each \(y \in U_{n,f} \). Since \(X \) is compact and \(\{ U_{n,f} \}_{n \in \mathbb{N}, f \in C} \) is not a base at \(x \) it must be that \(\cap_{n \in \mathbb{N}, f \in C} U_{n,f} \) is infinite (in fact, uncountable). Let \(A \) be any partition of \(\cap_{n \in \mathbb{N}, f \in C} U_{n,f} \) into two infinite pieces. Then \(\chi_A \) is not in the pointwise closure of \(C \).

By Arhangleski"i's Theorem on Lindelof spaces it must be that \(X \leq 2^{\aleph_0} \) and hence \([0,1]^X \) has a countable dense subset \(\mathcal{F} \). If for each \(F \in \mathcal{F} \) there is a countable family \(C_F \subseteq C(X) \) containing \(F \) in its pointwise closure then let \(\mathcal{C} = \bigcup_{F \in \mathcal{F}} C_F \).
and note that C is a countable dense subset of $[0, 1]^X$. Since X is compact, it follows that $\{ f^{-1}(p, q) \mid f \in C, p, q \in \mathbb{Q} \}$ is a countable base for X, contradicting that it is not metrizable.

Corollary 2.1. For every C^* algebra \mathcal{A} the following are equivalent:

1. \mathcal{A} is separable
2. every element of \mathcal{A}^{**} is in the weak*-closure of a countable subset of \mathcal{A}.

Proposition 2.3. There is a nonseparable Banach algebra B such that every element of B^{**} is in the weak*-closure of a countable subset of B.

Proof. Let $T : [\omega_1]^2 \to \mathbb{N}$ be a function such that for every uncountable $X \subseteq \omega_1$ and $n, k \in \mathbb{N}$ there is $Y \subseteq X$ such that $|Y| = n$ and $T(\{\alpha, \beta\}) = k$ for all $\{\alpha, \beta\} \in [Y]^2$. (This is the celebrated negative partition relation of Todorcevic.) Now for any $f : \omega_1 \to \mathbb{C}$ define

$$
\|f\| = \max \left\{ \left(\sum_{y \in Y} |f(y)|^k \right)^{1/k} \mid Y \subseteq \omega_1 \text{ and } T(\{\alpha, \beta\}) = k \text{ for all } \{\alpha, \beta\} \in [Y]^2 \right\}
$$

and let $B = \{ f : \omega_1 \to \mathbb{C} \mid \|f\| < \infty \}$. It is routine to check that $(B, \|\|)$ is an abelian Banach algebra.

Claim 1. If $f \in B$ then the support of f is countable.

Proof. If not then choose a rational $p > 0$ and uncountable $X \subseteq \omega_1$ such that, without loss of generality, $\Re(f(\xi)) > p$ for each $\xi \in X$. Let $Y \subseteq X$ be such that T has constant value 1 on $[Y]^2$ and $|Y| > \|f\|/p$. Then $\|f\| \geq |Y|p > \|f\|$. \qed

It is immediate that B is not separable. However, let $B_\xi = \{ f \in B \mid (\forall \eta > \xi) f(\eta) = 0 \}$ and note that each B_ξ is a closed, separable subspace of B and $B = \bigcup_{\xi \in \omega_1} B_\xi$.

For $\xi \in \omega_1$ let $\psi_\xi \in B^*$ be defined by $\langle \psi_\xi, f \rangle = f(\xi)$.

Claim 2. The span of $\{ \psi_\xi \mid \xi \in \omega_1 \}$ is norm dense in B^*.

Proof. Each $f \in B_\xi$ can be approximated in norm by some $f' \in B_\xi$ with finite support. \qed

Claim 3. If $\Psi \in B^{**}$ then $\langle \Psi, \psi_\xi \rangle = 0$ for all but countably many $\xi \in \omega_1$.

\qed