### Guidlines for Projects

Check the information on the next page .

### Areas and resources .

One project on the geometry of Origami was presented in December. Core resources for people who want more information are:
• Robert Geretschlager: Euclidean Constructions and the Geometry of Origami, Mathematics Magazine 68 (1995);
• Michael Serra: Patty Paper Geometry, Key Curriculum Press, 1944.
• A web site Joseph Wu's Origami Page which has information on history, instructions, photos, etc.
• Another web site: http:/www.planetj.com.origami/origami.html (I have not yet gotten this to work but ... ),
Other topics which are now being investigated:
• polyhedra: with connections to duality, generation etc. Here is a web site of tesselation pages at the Math Forum.
• symmetry in music (composers of modern music ... )
• symmetry in architecture, design, nature .... One web resource is the pages of Goodman-Strauss .
• central place theory (an geometric pattern in the location of towns, villages, etc. studied in geography);
• the geometry of string patterns and envelopes of curves;
• a Java based drawing program for spherical geometry;
• knot theory. This presentation was offered in the form of a set of very nice web pages. Here are some of the other web resources located: a Knot Theory Primer and Knots on the Web.
• the ruler and compass constructions of regular polygons ... ;
• Pick's theorem for areas of polygons and its relatives;
• Proof without words: when can combinatorial and algebraic theorems be 'proven' using a basic geometric diagram without much additional text or algebra. [Typically, the only additional feature is to 'recognize' that the sum of the areas of dijoint pieces is the area of the union of the pieces.]
• spherical geometry in high school teaching: how and why?;
• the geometry of binocular vision. Here is an interesting web site
• fractals, with a series of web site as auxiliary resources: Fast Furious Fractals , fractals , the Fractory, fun with fractals , chaos game
• the real and desired role of geometry in junior intermediate mathematics teaching. Related to this is the issue of the van Hiele model of geometry teaching. A second resource is the 3050 Home Page