- Find polar coordinates of the points whose Cartesian coordinates are:
**(a)**- (2,2);
**(b)**- (Ö3,-1);
**(c)**- (0,2);
**(d)**- (-3,-6);
**(e)**- (Ö2,-Ö2);
**(f)**- (-3,Ö3).

- Find the Cartesian coordinates of the points whose polar coordinates are:
**(a)**- (1,[(p)/4]);
**(b)**- (2,-[(p)/4]);
**(c)**- (2,-[(5p)/6]);
**(d)**- (-2,[(7p)/6]).

- Identify and sketch the graphs of the following curves:
**(a)**- r = 2sin2q;
**(b)**- r = 2q;
**(c)**- r = sinq+ cosq.

- Find all points of intersection of the curves r = sinq and r
^{2}= 3cos^{2}q. - Convert the following Cartesian coordinates in 3-dimentions into cylindrical polar form:
**(a)**- (2,2,3);
**(b)**- (4Ö3,-4,6);
**(c)**- (Ö3,1,-2).

- Convert the following cylindrical polar coordinates in 3-dimentions into Cartesian form:
**(a)**- (6,[(p)/6],2);
**(b)**- (4,[(4p)/3],-8).

- Describe the following curves or surfaces given in cylindrical polar coordinates:
**(a)**- q = [(p)/6], r = -2;
**(b)**- r = cosq;
**(c)**- z = 2r;
**(d)**- r = 4, z = q.

- Convert the following Cartesian coordinates in 3-dimentions into spherical coordinates:
**(a)**- (2,-2Ö3,4);
**(b)**- (-Ö2,Ö2,2Ö3).

- Convert the following spherical polar coordinates into Cartesian form:
**(a)**- (8,[(p)/4],[(p)/6]);
**(b)**- (4,[(p)/3],[(3p)/4]).

- Describe the following curves or surfaces given in spherical polar coordinates:
**(a)**- f = [(p)/6];
**(b)**- r = 5, f = [(p)/3];
**(c)**- r = 3cosf;
**(d)**- rsinf = cosf.

- Section 10.1

Question 4 (b), (d), (e), (f)

Question 9 (b), (c)

Question 10 (c), (d). - Section 10.2

Question 1 (c),(e)

Question 2 (d), (e)

Question 8. - Section 10.3

Question 3 (c), (d), (e)

Question 5

Question 10.

**The end
**

File translated from T

On 6 Mar 2001, 16:34.