Example 1(i): Figure 8 (a) Choice 1 of representatives for vertex orbits

Symmetric \((C_2)\) Pebble Game Algorithm Demonstration (Algorithm 7.1)
Example 1(i): Figure 8 (a) Choice 1 of representatives for vertex orbits ... continued.
Example 1(i): Figure 8 (a) Choice 1 of representatives for vertex orbits ... continued.

\hat{G} and \hat{G}^*

6$|B|$ - 6 pebble game
Step (1) (i)
Example 1(i): Figure 8 (a) Choice 1 of representatives for vertex orbits ... continued.

Place pebbled edges (with arrows) in the set E_1 and edge r into set R_1

$|B| - 6$ pebble game

Step (1) (i)
Example 1(i): Figure 8 (a) Choice 1 of representatives for vertex orbits ... continued.

Place pebbled edges from \hat{G}^* in the set E_1^* and edge r' into set R_1.

$6|B| - 6$ pebble game
Step (1) (ii)
Example 1(i): Figure 8 (a) Choice 1 of representatives for vertex orbits ... continued.

Continue to play the $6|B| - 6$ pebble game on the bridging edges, working on the two edges of an orbit consecutively.

$6|B| - 6$ pebble game
Step (1) (iii)
Example 1(i): Figure 8 (a) Choice 1 of representatives for vertex orbits ... continued.

Place the pebbled bridging edges (green) into E_2

6$|B|$ - 6 pebble game
Step (1) (iii)
Example 1(i): Figure 8 (a) Choice 1 of representatives for vertex orbits ... continued.

Place the pebbled bridging edges (green) into E_2

6$|B|$ - 6 pebble game
Step (1) (iii)
Example 1(i): Figure 8 (a) Choice 1 of representatives for vertex orbits ... continued.

Place the pebbled bridging edges (green) into E_2

6|B| - 6 pebble game
Step (1) (iii)
Example 1(i): Figure 8 (a) Choice 1 of representatives for vertex orbits ... continued.

Continue to place the pebbled bridging edges (green) into E_2

$6|B| - 6$ pebble game
Step (1) (iii)
Example 1(i): Figure 8 (a) Choice 1 of representatives for vertex orbits ... continued.
Example 1(i): Figure 8 (a) Choice 1 of representatives for vertex orbits ... continued.

Three remaining free pebbles indicate 1-non trivial symmetric DOF.

Place the pebbled orbit edges (green) into E_3.

$6|B_0|$ - 2 pebble game on the orbit graph G_0

Step (2) (i), (ii)

Three remaining free pebbles indicate 1-non trivial symmetric DOF.
Example 1(ii): Figure 8 (b) Choice 2 of representatives for vertex orbits

Symmetric (C_2) Pebble Game Algorithm Demonstration (Algorithm 7.1)
Example 1(ii): Figure 8 (b) Choice 2 of representatives for vertex orbits ... continued
Example 1(ii): Figure 8 (b) Choice 2 of representatives for vertex orbits ... continued

Place pebbled edges (with arrows)
in E_1

\widehat{G}

\widehat{G}^*

6|B| - 6 pebble game
Step (1) (i)
Example 1(ii): Figure 8 (b) Choice 2 of representatives for vertex orbits ... continued

Place pebbled edges from \hat{G} in the set E_1^*

$6|B| - 6$ pebble game

Step (1) (ii)
Place the pebbled bridging edges (green) into E_2.

A failed search region for edge r'.

Bridging edges r and r' (tested last among bridging pairs) are placed into R_1 as their failed search does not contain two copies of any vertex orbit.

Example 1(ii): Figure 8 (b) Choice 2 of representatives for vertex orbits ... continued
Example 1(ii): Figure 8 (b) Choice 2 of representatives for vertex orbits ... continued

$6 |B_0| - 2$ pebble game on the orbit graph G_0
Step (2) (i), (ii)
Example 1(ii): Figure 8 (b) Choice 2 of representatives for vertex orbits ... continued

6|B₀| - 2 pebble game on the orbit graph G₀
Step (2) (i), (ii)

Three remaining free pebbles indicate
1-non trivial symmetric DOF

Place the pebbled orbit edges (green) into E₃
Example 2: Figure 8 (c)

Symmetric (C_2) Pebble Game Algorithm Demonstration (Algorithm 7.1)
Example 2: Figure 8 (c) ... continued
Example 2: Figure 8 (c) ... continued

Place pebbled edges from G^* in the set E_1^*

\hat{G}

\hat{G}^*

$6|B| - 6$ pebble game
Step (1) (i - ii)
Place the pebbled bridging edges (green) into E_2.

Bridging edges q and q' (tested last among bridging pairs) are placed in the set Q as their failed search region contains two copies of vertex orbit.

A failed search region for edges q and q' is the entire graph G.

6$|B|$ - 6 pebble game
Step (1) (iii - vi)
Example 2: Figure 8 (c) ... continued

$6|B_0| - 2$ pebble game on the orbit graph G_0

Step (2) (i), (ii)
Example 2: Figure 8 (c) ... continued

6|B₀| - 2 pebble game on the orbit graph G₀
Step (2) (i), (ii)

Two remaining free pebbles indicate 0 non-trivial symmetric DOF

All orbit edges in $E_2 \cup Q$ are successfully pebbled
Example 3: Figure 9

Symmetric (C_2) Pebble Game Algorithm Demonstration (Algorithm 7.1)
Example 3: Figure 9 ... continued

\(^\wedge G \) and \(^\wedge G^* \) - 6 pebble game

Step (1) (i)
Example 3: Figure 9 ... continued

6|B| - 6 pebble game
Step (1) (ii)
6|B| - 6 pebble game
Step (1) (iii)
Example 3: Figure 9 ... continued

$6|B_0| - 2$ pebble game
Step (2) (i - ii)
Three remaining free pebbles indicate that boat has C_2-symmetric non-trivial DOF

6$|B_0| - 2$ pebble game
Step (2) (i - ii)