Many thanks to the organizers!
Many thanks to all the organizers!

Clemens, Kevin, Johannes, Kristin, Kari, Thomas, Lara, Henning, Sophie, Peter, Lauren, and Philipp.
Lecture 3 recap:
Another look at the types

Definition (Type as a character)
Fix n, $B \leq C$, and $\bar{c} \in C^n$. The *complete type* of \bar{c} in C over B is

$$\text{type}_C(\bar{c}/B) : \mathbb{F}^n(B) \ni \varphi \mapsto \varphi^C(\bar{c}).$$

Lemma

1. $\text{type}_C(\bar{c}/B)$ is a character on $\mathbb{F}^n(B)$.
2. $\text{type}_C(\langle \rangle / \mathbb{C}) = \text{Th}(C)$.
3. $\text{type}_C(\langle \rangle / B)$ is the theory of C in $\mathbb{F}^0(B)$.
Type as a set of conditions

With $B \leq C$, a k-condition over C in $\mathbb{F}^k(B)$

$$\varphi(\bar{x}) = r$$

where $\varphi \in \mathbb{F}^k(B)$ and $r \in \mathbb{R}$.

k-type over B is a set of k-conditions over B.

The type of \bar{c} in C over B:

$$\{ \varphi(\bar{x}) = \varphi^C(\bar{c}) | \varphi \in \mathbb{F}^k(B) \}.$$

Definition

1. $\bar{c} \in C^k_1$ realizes $t(\bar{x})$ if $\varphi^C(\bar{c}) = r$ for every $\varphi(\bar{x}) = r$ in $t(\bar{x})$.
2. $t(\bar{x})$ is consistent if every finite subset is approximately realized.
Definition

C is countably saturated if for every separable $B \leq C$, every consistent type over B is realized in C.

(Note: Type being consistent depends on the way B sits inside C.) Thanks to Jamie Gabe for suggesting the following.

Proposition

TFAE

1. C is countably saturated.

2. For every k and separable $B \leq C$,

$$\{\text{type}_C(\bar{c}/B) | \bar{c} \in C_1^k\}$$

is weak*-closed in $\mathbb{F}^k(B)^*$.
Theorem

For every B, B_U and B_∞ are countably saturated.
The Continuum Hypothesis

CH, the Continuum Hypothesis:
Every set of cardinality 2^\aleph_0 (e.g., $A_\mathcal{U}$, A_∞, $\ell_2(\mathbb{N})$, $B(\ell_2(\mathbb{N}))$, ...) has a well-ordering all of whose proper initial segments are countable.

CH is independent from ZFC (Gödel, Cohen).

Proposition (Platek)

A classification result for separable C^*–algebras proved using CH can be proved in ZFC alone.

I will assume the CH throughout today’s lecture.
Recall
\(\mathbb{F}^0(\mathbb{C}) \): the \(\mathbb{R} \)-algebra of all sentences.
\(\text{Th}(A) \): the evaluation character on \(\mathbb{F}^0(\mathbb{C}) \), defined by \(\varphi \mapsto \varphi^A \).

Definition

\(A \) and \(B \) are *elementarily equivalent*, \(A \equiv B \), if \(\text{Th}(A) = \text{Th}(B) \).

Example

1. Łoś: \(A \equiv A_U \).
2. Ghasemi: If \(\mathcal{F} \) is a filter such that the restriction of \(\mathcal{F} \) to any \(\mathcal{F} \)-positive set is not an ultrafilter, then \(A_\infty \equiv A_\mathcal{F} \).
3. There are elementarily equivalent, but not isomorphic, separable, simple AF algebras.
4. Ditto for Kirchberg algebras.
The density character of C, $\chi(C)$, is the smallest cardinality of a dense subset. (Thus $\chi(C) = \aleph_0$ iff C is separable.)

Definition
We say that C is *saturated* if every consistent type t over $B \leq C$ such that $\chi(B) < \chi(C)$ is realized in C.

Lemma (CH)
$C_\mathcal{U}$ and C_∞ are saturated for every C such that $\chi(C) \leq 2^{\aleph_0}$.

Proof.
CH implies
$|X| < 2^{\aleph_0}$ iff X is countable.

Theorem (Keisler, I think)

If C and D are saturated and $\chi(C) = \chi(D)$, then $C \equiv D$ iff $C \cong D$.
Corollary

CH implies that for all $A, \mathcal{U}, \mathcal{V}$ we have

$$A_\mathcal{U} \cong A_\mathcal{V} \cong (A_\mathcal{U})_\mathcal{V} \cong ((A_\mathcal{U})_\mathcal{U})_\mathcal{V} \ldots$$

$$A_\infty \cong (A_\infty)_\infty \cong (A_\mathcal{U})_\infty \cong (A_\infty)_\mathcal{U} \cong ((A_\infty)_\mathcal{U})_\mathcal{V} \infty \ldots$$

Many of these are independent from ZFC. (Shelah, F., Dow–Hart, McKenney–Vignati, Vignati...)
Theorem

CH implies $A_U \cap A' \cong A_V \cap A'$.

Proof.

Find isomorphism $\Phi: A_U \rightarrow A_V$ so that $\Phi \upharpoonright A = \text{id}_A$.

This is independent from ZFC (F.–Hart–Sherman, F.–Shelah).
Löwenheim–Skolem–Blackadar

Theorem

If C is nonseparable and $B \leq C$ is separable, then there is $B \leq A \leq C$.

Proof:

Reduction 1, the Tarski–Vaught test:

$A \leq C$ iff

$$\inf_{x \in A_1} \varphi^C(\bar{a}, x) \leq \inf_{x \in C_1} \varphi^C(\bar{a}, x).$$

(1)

Reduction 2

It suffices to assure (1) for a dense set of $\bar{a} \in A^n$ and a dense subset of $\varphi \in F^n(B)$.

Build $B = A_0 \leq A_1 \leq A_2 \leq \ldots$ and let $A = \bigcup_n A_n$.

\[\square\]
Corollary (CH)

If C is countably saturated and $\chi(C) = \aleph_1$, then $C = \lim_{\alpha < \aleph_1} A_\alpha$ so that for all α

1. $A_\alpha \leq C$, and
2. $(A_\alpha)_U \cong C$ (the isomorphism fixes A_α).

Corollary (Keisler–Shelah)

$A \equiv B$ iff $A_U = B_U$ for some U.
Corollary (CH)

If A is separable, then $A_\infty \cong B_\mathcal{U}$ for some separable B.

Can we construct B from A?

We can construct $\text{Th}_A(B)$ (the theory of B in $\mathcal{F}(A)$) from $\text{Th}(A)$,
Lemma (Eagle–Vignati)

Let K denote the Cantor space.

1. If A is separable, then $A \equiv C(K)$ if and only if $A \approx C(K)$.
2. If $A \leq \ell_\infty/c_0$, A contains the unit, and $A \approx C(K)$, then $A \leq \ell_\infty/c_0$.

(In model-theoretic jargon: Th($C(K)$) is \aleph_0-categorical,\(^1\) model-complete, and it admits elimination of quantifiers.)

Proof relies on analyzing the joint spectra of tuples of normal operators.

Corollary (CH)

$C(K)_\infty \approx C(K)_U \approx \ell_\infty/c_0$.

\(^1\)They actually say ω-categorical, but let’s not go there.
Lemma (F.)

Suppose A is unital. Then $A \otimes C(K) \prec A_\infty$, for any $C(K) \hookrightarrow \ell_\infty/c_0$.

\[
\begin{array}{ccc}
C(K) & \xrightarrow{1_A \otimes \text{id}_{C(K)}} & A \otimes C(K) \\
\downarrow & & \downarrow \\
\ell_\infty/c_0 & \rightarrow & A_\infty
\end{array}
\]

(The vertical arrows are elementary embeddings.)

Corollary (CH)

$A_\infty \cong (A \otimes C(K))_\mathcal{U}$ for some (any) \mathcal{U}.

(The isomorphism is equal to the identity on A.)
Theorem (F.)

Suppose A is separable and unital. Then there are $\Theta_\mathcal{U}$, $\Phi_\mathcal{U}$ such that the diagram commutes.
Proof.
Fix a point $0 \in K$. Consider the structure

$$(A \otimes C(K), A, \Theta, \Phi),$$

where $\Theta(a) = a \otimes 1_{C(K)}$, $\Phi(a \otimes f) = f(0)a$. Then $\Phi \circ \Theta = \text{id}_A$ and $\Theta \circ \Phi$ is a conditional expectation onto $A \otimes 1_{C(K)}$. By Łoś (in the language $\mathbb{F}(A)$ (with added constants for Θ, Φ, and the distance function to A), $((A \otimes C(K))_U, A_U, \Theta_U, \Phi_U)$ satisfies this. Since we worked in $\mathbb{F}(A)$, the embeddings of A into A_U and A_∞ commute. \qed
The following was a question (conjecture?) of Chris Schafhauser

Theorem

If $F : \mathcal{C}^*\text{-algebras} \to \mathcal{C}$ is a functor, then for unital, separable A and B and $\varphi : F(A) \to F(B)$, TFAE

1. φ is realized by a *-homomorphism $\Phi : A \to B_{\mathcal{U}}$ for some (any) nonprincipal ultrafilter \mathcal{U} on \mathbb{N}.

2. φ is realized by a *-homomorphism $\Phi : A \to B_\infty$.

$(1) \Rightarrow (2)$, together with the Kirchberg–Phillips–Gabe reindexing, implies that φ is realized by $\Psi : A \to B$.