THE RELATIVE COMMUTANT OF SEPARABLE C*-ALGEBRAS OF REAL RANK ZERO

ILLIAS FARAH

Abstract. We answer a question of E. Kirchberg (personal communication): does the relative commutant of a separable C*-algebra in its ultrapower depend on the choice of the ultrafilter?

All algebras and all subalgebras in this note are C*-algebras and C*-subalgebras, respectively, and all ultrafilters are nonprincipal ultrafilters on \(\mathbb{N} \). Our C*-terminology is standard (see e.g., [2]).

In the following \(\mathcal{U} \) ranges over nonprincipal ultrafilters on \(\mathbb{N} \). With \(A^\mathcal{U} \) denoting the (norm, also called C*-1) ultrapower of a C*-algebra \(A \) associated with \(\mathcal{U} \) we have

\[
F_\mathcal{U}(A) = A' \cap A^\mathcal{U},
\]

the relative commutant of \(A \) in its ultrapower. This invariant plays an important role in [8] and [7].

Theorem 1. For every separable infinite-dimensional C*-algebra \(A \) of real rank zero the following are equivalent.

1. \(F_\mathcal{U}(A) \cong F_\mathcal{V}(A) \) for any two nonprincipal ultrafilters \(\mathcal{U} \) and \(\mathcal{V} \) on \(\mathbb{N} \).
2. \(A^\mathcal{U} \cong A^\mathcal{V} \) for any two nonprincipal ultrafilters \(\mathcal{U} \) and \(\mathcal{V} \) on \(\mathbb{N} \).
3. The Continuum Hypothesis.

The equivalence of (3) and (2) in Theorem 1 for every infinite-dimensional C*-algebra \(A \) of cardinality \(2^{\aleph_0} \) that has arbitrarily long finite chains in the Murray-von Neumann ordering of projections was proved in [6, Corollary 3.8], using the same Dow’s result from [4] used here.

We shall prove (1) implies (3) and (2) implies (3) in Corollary 10 below. The reverse implications are well-known consequences of countable saturatedness of ultrapowers associated with nonprincipal ultrafilters on \(\mathbb{N} \) (see [1, Proposition 7.6]). The implication from (3) to (1) holds for every separable C*-algebra \(A \) and the implication from (3) to (2) holds for every C*-algebra \(A \) of size \(2^{\aleph_0} \). The point is that if \(A \) is separable then the isomorphism between diagonal copies of \(A \) extends to an isomorphism between
the ultrapowers. Countable saturation of \(A^U \) can be proved directly from its analogue, due to Keisler, in classical model theory. This also follows from the argument in [6, Theorem 3.2 and Remark 3.3].

While the Continuum Hypothesis implies that any two ultrapowers of \(B(H) \) associated with nonprincipal ultrafilters on \(\mathbb{N} \) are isomorphic, it does not imply that the relative commutants of \(B(H) \) in those ultrapowers are isomorphic. As a matter of fact, it implies the opposite (see [5]).

For a \(C^* \)-algebra \(A \) let \(\mathcal{P}(A) = \{ p : p \in A \text{ is a projection} \} \) ordered by \(p \leq q \) if and only if \(pq = p \). Our proof depends on the analysis of types of gaps in \(\mathcal{P}(A' \cap A^U) \) (see Definition 4). Gaps in \(\mathcal{P}(\mathbb{N}) / \text{Fin} \) and related quotient structures are well-studied; for example, analysis of such gaps is very important in the consistency proof of the statement ‘all Banach algebra automorphisms of \(C(X) \) into some Banach algebra are continuous’ (see [3]).

It was recently discovered that the gap-spectrum of \(\mathcal{P}(C(H)) \) (where \(C(H) \) is the Calkin algebra, \(B(H)/\mathcal{K}(H) \)) is much richer than the gap-structure of \(\mathcal{P}(\mathbb{N}) / \text{Fin} \) ([12]).

Notational convention. We denote elements of ultraproducts by boldface Roman letters such as \(\mathbf{p} \) and their representing sequences by \(p(n) \), for \(n \in \mathbb{N} \). We shall follow von Neumann’s convention and identify a natural number \(n \) with the set \(\{0, \ldots, n-1\} \). The symbol \(\omega \) is used for ultrafilters in the operator algebra literature and it is reserved for the least infinite ordinal in the set-theoretic literature. I will avoid using it in this note.

By \(\sigma(a) \) we denote the spectrum of a normal operator \(a \). Lemma 2 below is well-known. A sharper result can be found e.g., in [9, Lemma 2.5.4] but we include a proof for reader’s convenience.

Lemma 2. For a self-adjoint \(a \) and a projection \(r \), if \(\|a-r\|<\varepsilon<1 \) then \(\sigma(a) \subseteq (-2\sqrt{\varepsilon},2\sqrt{\varepsilon}) \cup (1-2\sqrt{\varepsilon},1+2\sqrt{\varepsilon}) \). If in addition \(\varepsilon<1/16 \) then there is a projection \(r' \) in \(C^*(a) \) such that \(\|r'-a\|<2\sqrt{\varepsilon} \).

Proof. Since \(\|a\|<1+a<2 \), we have \(\|a^2-a\| \leq \|a(a-r)\| + \|r(a-r)\| + \|a-r\| < 4\varepsilon \). Thus \(|x(1-x)| < 4\varepsilon \) for all \(x \in \sigma(a) \) and in turn \(|x| < 2\sqrt{\varepsilon} \) or \(|1-x| < 2\sqrt{\varepsilon} \).

Now assume \(\varepsilon<1/16 \). In this case \(1/2 \notin \sigma(a) \). Define a continuous function \(f \) with domain \(\sigma(a) \) as follows. Let \(f(t) = 0 \) for \(-\infty < t < 1/2 \) and \(f(t) = 1 \) for \(1/2 < t < \infty \). Since \(|f(t) - t| < 2\sqrt{\varepsilon} \) for all \(t \in \sigma(a) \), \(f(a) \) is a projection in \(C^*(a) \) as required. \(\square \)

A representing sequence \(p(n) \) of a projection \(\mathbf{p} \) in an ultrapower can be chosen so that each \(p(n) \) is a projection (see [6, Proposition 2.5 (1)]), this also follows immediately from [10, Lemma 4.2.2] or [9, Lemma 2.5.5]).

Lemma 3. For projections \(\mathbf{p}, \mathbf{q} \) in \(A^U \) the following are equivalent.

1. \(\mathbf{p} \leq \mathbf{q} \).
2. There is a representing sequence \(p'(i) \), for \(i \in \mathbb{N} \), of \(\mathbf{p} \) such that \(p'(i) \leq q(i) \) for all \(i \).
(3) There is a representing sequence \(q'(i) \), for \(i \in \mathbb{N} \), of \(q \) such that \(p(i) \leq q'(i) \) for all \(i \).

Proof. Both (3) implies (1) and (2) implies (1) are trivial. We shall prove (1) implies (2). Assume \(p \leq q \). For every \(n \geq 1 \) the set
\[
X_n = \{ j : \|q(j)p(j)q(j) - p(j)\| < 1/(4n) \}
\]
belongs to \(\mathcal{U} \). We may assume \(\bigcap_n X_n = \emptyset \). Let \(p'(j) = 0 \) if \(j \notin X_0 \). If \(j \in X_n \setminus X_{n+1} \) then Lemma 2, with \(a(j) = q(j)p(j)q(j) \), implies there is a projection \(p'(j) \in C^*(a(j)) \) such that \(\|p'(j) - a(j)\| < 1/(2\sqrt{n}) \). Then \(p'(j) \leq q(j) \) and \(\|p'(j) - p(j)\| < 1/\sqrt{n} \) for all \(j \in X_n \). Therefore \(p'(j) \), for \(j \in \mathbb{N} \), is a representing sequence of \(p \) as required.

In order to prove (1) implies (3) apply the above to \(1 - p \geq 1 - q \) in the ultrapower of the unitization of \(A \) to find an appropriate representing sequence for \(1 - q \). \(\square \)

By \(\mathbb{N}^{\mathbb{N}} \) we denote the set of all nondecreasing functions \(f \) from \(\mathbb{N} \) to \(\mathbb{N} \) such that \(\lim_n f(n) = \infty \), ordered pointwise. Write \(f \leq_U g \) if \(\{ n : f(n) \leq g(n) \} \in \mathcal{U} \) and denote the quotient linear ordering by \(\mathbb{N}^{\mathbb{N}}/\mathcal{U} \).

Following [4], for an ultrafilter \(\mathcal{U} \) we write \(\kappa(\mathcal{U}) \) for the **coinitiality** of \(\mathbb{N}^{\mathbb{N}}/\mathcal{U} \), i.e., the minimal cardinality of \(X \subseteq \mathbb{N}^{\mathbb{N}}/\mathcal{U} \) such that for every \(g \in \mathbb{N}^{\mathbb{N}}/\mathcal{U} \) there is \(f \in X \) such that \(f \leq_U g \). (It is not difficult to see that this is equal to \(\kappa(\mathcal{U}) \) as defined in [4, Definition 1.3].)

Definition 4. Let \(\lambda \) be a cardinal. An \((\mathbb{N}_0, \lambda) \)-**gap** in a partially ordered set \(\mathbb{P} \) is a pair consisting of a \(\leq_{\mathbb{P}} \)-increasing family \(a_m \), for \(m \in \mathbb{N} \), and a \(\leq_{\mathbb{P}} \)-decreasing family \(b_\gamma \), for \(\gamma < \lambda \), such that \(a_m \leq_{\mathbb{P}} b_\gamma \) for all \(m \) and \(\gamma \) but there is no \(c \in \mathbb{P} \) such that \(a_m \leq_{\mathbb{P}} c \) for all \(m \) and \(c \leq_{\mathbb{P}} b_\gamma \) for all \(\gamma \).

Assume \(r^0(n) \leq r^1(n) \leq \cdots \leq r^{l(n)-1}(n) \) are projections in \(A \) and \(\lim_{n \to \infty} l(n) = \infty \). For \(h : \mathbb{N} \to \mathbb{N} \) define \(r^h \) via its representing sequence (let \(r^i(n) = r^{l(n)-1}(n) \) for \(i \geq l(n) \))
\[
r^h(n) = r^{h(n)}(n).
\]
Let \(p_m = r^m \), where \(m(j) = m \) for all \(j \).

Lemma 5. With notation from the previous paragraph, for every projection \(s \) in \(A^\mathcal{U} \) such that \(p_m \leq s \) for all \(m \) there is \(h : \mathbb{N} \to \mathbb{N} \) such that \(p_m \leq r^h \) for all \(m \) and \(r^h \leq s \).

Proof. Since \(p_m \leq s \), for each \(m \in \mathbb{N} \) the set
\[
X_m = \{ i : \|r^m(i)s(i) - r^m(i)\| < 1/m \}
\]
belongs to \(\mathcal{U} \). Since the value of \(\|r^m(i)s(i) - r^m(i)\| \) is increasing in \(m \) we have \(X_m \supseteq X_{m+1} \). We may assume \(\bigcap_m X_m = \emptyset \). Define \(h : \mathbb{N} \to \mathbb{N} \) by letting \(h(i) = 0 \) for \(i \notin X_0 \) and for \(i \in X_m \setminus X_{m+1} \) let \(h(i) = m \).

For each \(m \) and \(i \in X_m \) we have \(h(i) \geq m \) and therefore \(r^h \geq p_m \). Also, \(i \in X_m \) implies \(\|r^h(i)s(i) - r^h(i)\| < 1/m \) hence \(r^h \leq s \). \(\square \)
The proof of Proposition 6 was inspired by Alan Dow’s [4, Proposition 1.4]. Dow’s result was independently proved by Saharon Shelah and can be found in [11].

By $A_{\leq 1}$ we denote the unit ball of a C*-algebra A.

Proposition 6. Assume A is a separable C*-algebra and there are finite self-adjoint sets $F_0 \subseteq F_1 \subseteq F_2 \subseteq \cdots \subseteq A_{\leq 1}$ whose union is dense in $A_{\leq 1}$ and such that for each n there is a \leq-increasing chain C_n of projections in $B_n = F_n' \cap A$ of length at least n.

Then for every nonprincipal ultrafilter U on \mathbb{N} and every cardinal λ there is an (\aleph_0, λ)-gap in $\mathcal{P}(A' \cap A^U)$ if and only if $\kappa(U) = \lambda$.

Proof. First we prove the converse implication. Assume g_γ, for $\gamma < \lambda = \kappa(U)$, is a \leq_U-decreasing and \leq_U-unbounded below chain of functions in \mathbb{N}/\mathbb{N}. Let $0 = r^0(n) \leq r^1(n) \leq \cdots \leq r^{n-1}(n)$ be an enumeration of C_n.

Claim 7. For all f, g in \mathbb{N}/\mathbb{N} the following are equivalent.

1. $f \leq_U g$,
2. $r^f \leq r^g$.

Proof. Assume $f \leq_U g$. Then $X = \{ j : f(j) \leq g(j) \} \in U$ and $r^f(j) \leq r^g(j)$ for all $j \in X$ hence (2) follows. If $f \not\leq_U g$ then $X = \{ j : f(j) > g(j) \} \in U$ and for all $j \in X$ we have $\| r^f(i)r^g(i) - r^f(i) \| = 1$, hence $r^f \not\leq r^g$. □

Let $q_\gamma = r^{g_\gamma}$, for $\gamma < \lambda$. By Claim 7 we have

$$p_m \leq p_{m+1} \leq q_\delta \leq q_\gamma$$

for all m and all $\gamma < \delta < \lambda$. All of p_m and q_γ belong to $A' \cap A^U$.

We shall show that this family forms a gap in $\mathcal{P}(A^U)$ (and therefore it forms a gap in $\mathcal{P}(A' \cap A^U)$). Assume $s \in A^U$ is such that $s \leq q_\gamma$ for all γ. By Lemma 5 there is h such that $p_m \leq r^h \leq s$ for all m. By Claim 7 we have $h \leq_U g_\gamma$ for all γ and $m \leq_U h$ for all m, a contradiction.

In order to prove the direct implication, assume that p_m, q_γ form an (\aleph_0, λ)-gap in $\mathcal{P}(A' \cap A^U)$. By successively using Lemma 3 for $m = 1, 2, \ldots$ find representing sequences $p_m(i)_{i \in \mathbb{N}}$, for p_m such that $p_m(i) \leq p_{m+1}(i)$ for all i. Choose an increasing sequence $0 = m_0 < m_1 < m_2 < \ldots$ such that the following holds for all k.

(*) for all $j < m_k$ and all $a \in F_{m_k}$, if $l \geq m_{k+1}$ then $\| [p_j(l), a] \| < 1/k$.

For $n \in \mathbb{N}$ and i such that for some k we have $i < m_k$ and $m_{k+1} \leq n$ let $r^i(n) = p_i(n)$. Thus we have projections

$$r^0(n) \leq r^1(n) \leq \cdots \leq r^{m_k}(n)$$

whenever $n \geq m_{k+1}$. For $h : \mathbb{N} \to \mathbb{N}$ define r^h as in the paragraph before Lemma 5, by its representing sequence (let $r^i(n) = r^{m_k}(n)$ if $i \geq m_k$)

$$r^h(n) = r^{h(n)}(n).$$

1 I could not find it, but it should be somewhere in Chapter VI.
Claim 8. If $h: \mathbb{N} \to \mathbb{N}$ then $r^h \in A' \cap A^U$.

Proof. Fix any b in the unit ball of A and $\varepsilon > 0$. If $k > 1/\varepsilon$ and there is $b' \in F_{2k}$ satisfying $\|b - b'\| < \varepsilon/2$ then for $i > n_{2k}$ in Y we have that $\|p_{\gamma}(i), b')\| < \varepsilon/2$ and therefore $\|r^h(i), b\| < \varepsilon$ for U-many i. □

Using Lemma 5 for each q, find h_{γ} such that $r^\gamma = r^{h_{\gamma}}$ satisfies $p_i q_s \leq r^\gamma$ for all i. Since \mathbb{N}/\mathcal{U} is a linear ordering and λ is a regular cardinal, we can find a cofinal subset Z of λ such that for $\gamma < \delta$ in \mathcal{Z} we have $r^\delta \leq r^\gamma$. By reenumerating we may assume $\mathcal{Z} = \lambda$ and then r^γ, for $\gamma \in \mathcal{Z}$, together with p_i, for $i \in \mathbb{N}$, form an $(\aleph_\lambda, \lambda)$-gap. However, $r^\delta \leq r^\gamma$ is equivalent to $h_{\delta} \leq_{\mathcal{U}} h_{\gamma}$, and therefore h_{γ}, for $\gamma < \lambda$, form a $\leq_{\mathcal{U}}$-decreasing and $\leq_{\mathcal{U}}$-unbounded below sequence in \mathbb{N}/\mathcal{U}, and therefore $\lambda = \kappa(\mathcal{U})$. □

The proof of Proposition 6 can be modified (by removing some of its parts) to a proof of the following.

Proposition 9. Assume A is a separable C*-algebra and $\mathcal{P}(A)$ has arbitrarily long finite chains. Then for every nonprincipal ultrafilter \mathcal{U} on \mathbb{N} and every cardinal λ there is an $(\aleph_\lambda, \lambda)$-gap in $\mathcal{P}(A^U)$ if and only if $\kappa(\mathcal{U}) = \lambda$. □

Corollary 10. Assume the Continuum Hypothesis fails. If A is an infinite-dimensional separable C*-algebra of real rank zero then there are nonprincipal ultrafilters \mathcal{U} and \mathcal{V} on \mathbb{N} such that $F_\mathcal{U}(A) \not\cong \mathcal{F}_\mathcal{V}(A)$ and $A^\mathcal{U} \not\cong A^\mathcal{V}$.

Proof. By [4, Theorem 2.2] we can find \mathcal{U} and \mathcal{V} so that $\kappa(\mathcal{U}) = \aleph_1$ and $\kappa(\mathcal{V}) = \aleph_2$ (here \aleph_1 and \aleph_2 are the least two uncountable cardinals; all that matters for us is that they are both less or equal than 2^{\aleph_0} and different). Therefore $\mathcal{P}(A' \cap A^\mathcal{U})$ has an (\aleph_0, \aleph_1)-gap while $\mathcal{P}(A' \cap A^\mathcal{V})$ does not, and $A' \cap A^\mathcal{U}$ and $A' \cap A^\mathcal{V}$ cannot be isomorphic.

It remains to prove that if A is an infinite-dimensional C*-algebra of real rank zero then $\mathcal{P}(A)$ has an infinite chain of projections. We may assume A is unital. Recursively find a decreasing sequence r_n for $n \in \mathbb{N}$ in $\mathcal{P}(A)$ so that $r_n A r_n$ is infinite-dimensional for all n. Assume r_n has been chosen. Since A has real rank zero, in $r_n A r_n$ we can fix a projection $q \notin \{0, r_n\}$. If $q A r_n q$ is infinite-dimensional then let $r_{n+1} = q$. Otherwise, let $r_{n+1} = r_n - q$ and note that $r_{n+1} A r_{n+1}$ is infinite-dimensional. □

It is likely that Theorem 1 and Corollary 10 can be extended to all infinite-dimensional separable C*-algebras (possibly by considering the Cuntz ordering of positive elements instead of $\mathcal{P}(A)$).

References

Department of Mathematics and Statistics, York University, 4700 Keele Street, North York, Ontario, Canada, M3J 1P3

E-mail address: ifarah@mathstat.yorku.ca
URL: http://www.math.yorku.ca/~ifarah