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Abstract. We realize the Jiang-Su algebra, all UHF algebras, and the hy-

perfinite II1 factor as Fräıssé limits of suitable classes of structures. Moreover
by means of Fräıssé theory we provide new examples of AF algebras with

strong homogeneity properties. As a consequence of our analysis we deduce

Ramsey-theoretic results about the class of full-matrix algebras.

1. Introduction

Fräıssé theory lies at the crossroads of combinatorics and model theory. It orig-
inates from the seminal work of Fräıssé in [14] for the case of discrete countable
structures. Broadly speaking, Fräıssé theory studies the correspondence between
homogeneous structures and properties of the classes of their finitely generated sub-
structures. The age of a countable structure is the collection of its finitely generated
substructures, and the ages of homogeneous structures are precisely the classes of
structures known as Fräıssé classes. Conversely, given any Fräıssé class one can
construct a countable homogeneous structure with the given class as its age. This
structure, which is referred to as the Fräıssé limit of the class, is unique up to
isomorphism, and can be thought of as the structure generically constructed from
the class.

Fräıssé theory has been recently generalized to metric structures by Ben Yaacov
in [1]. An earlier approach to Fräıssé limits in the metric setting was developed
in [35]. Standard examples of metric Fräıssé limits are the Urysohn metric space,
its variants, and the Gurarij Banach space (previously construed as a Fräıssé limit
in [23]). The Elliott intertwining argument central in classification program for
nuclear C*-algebras (see [31]) is closely related to the proof of uniqueness of metric
Fräıssé limits.

In this paper we study Fräıssé limits of C*-algebras. In particular we show
that several important C*-algebras can be described as Fräıssé limits of suitable
classes. As in [26], we work under slightly less general assumptions than [1], and we
consider only classes where the interpretation of functional and relational symbols
are Lipschitz (see Section 2 below for the precise definitions). In our constructions
we consider Fräıssé classes that are not complete (in the sense of [1]) and are not
closed under substructures. The reason we do this is that the class of finitely
generated substructures of a given C*-algebra tends to be too large. As a matter
of fact, conjecturally all simple and separable C*-algebras are singly generated (see
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[36]). As a consequence we only consider classes that are made of suitable “small”
subalgebras of the given C*-algebra.

We show that the Jiang-Su algebra Z [20] and all UHF algebras [16] are limits of
suitable Fräıssé classes. Both Z and UHF algebras are examples of C*-algebras of
fundamental importance for the classification program of C*-algebras, a survey of
which can be found in [31], [8]. Furthermore we prove that, while the class of finite-
dimensional C*-algebras is not Fräıssé, one can obtain a Fräıssé class by adding
a distinguished interior trace and imposing a restriction on the number of direct
summands. This provides new examples of AF algebras satisfying strong homo-
geneity properties. Finally we deduce a Ramsey-type result for the class of matrix
algebras, either endowed with the operator norm or with the trace-norm. This is
obtained from the above mentioned description of (infinite type) UHF algebras as
limits, together with a similar characterization of the hyperfinite II1 factor R. We
use the observation that the corresponding automorphism groups are extremely
amenable which is a result due to Gromov [17]. The other ingredient is the well
known connection between extreme amenability and Ramsey-theoretic properties
of a Fräıssé class originally established in [21] and recently generalized to the metric
setting in [26].

The paper is divided into seven sections. In Section 2 we recall the basic notions
and results of Fräıssé theory, adapted to the framework of C*-algebras. Section 3
contains the results about UHF algebras, AF algebras, and the hyperfinite II1 fac-
tor. The description of the Jiang-Su algebra as a Fräıssé limit is presented in
Section 4. We recall the notions of Lévy groups and extremely amenable groups in
Section 5, where we observe that the automorphisms groups of the hyperfinite II1

factor and infinite type UHF algebras are Lévy. This is used in Section 6 to de-
duce Ramsey-type results about the class of full matrix algebras. We conclude in
Section 7 with a discussion of future lines of research and open problems.

2. Fräıssé limits of C*-algebras

In this section we define Fräıssé classes of C*-algebras and their Fräıssé limits.
Recall that a C*-algebra is a subalgebra of the algebra of bounded linear operators
on a Hilbert space which is closed under the adjoint operation * and is closed in
the operator norm topology (see [4] for an introduction to C*-algebras). We will
often consider unital C*-algebras, that is, algebras with a multiplicative identity
element, but when we say “C*-algebra” without qualification we mean an algebra
which is not necessarily unital. We will consider C*-algebras as examples of metric
structures. The literature contains several definitions of metric structures suited to
various purposes; the one we present here is the same as in [26].

Definition 2.1. A language L consists of a set of predicate symbols and a set
of function symbols. Each predicate symbol P and function symbol f carries an
associated arity and Lipschitz constant CP and Cf respectively. We assume that
every language includes a distinguished symbol d, which will always be interpreted
as a metric.

An L-structure is a complete metric space (A, d), together with interpretations
for the symbols of L: for each

(1) n-ary predicate symbol P , a CP -Lipschitz function PA : An → R, and
(2) each n-ary function symbol f , a Cf -Lipschitz function fA : An → A.
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We need to say a word about how we will formally see C*-algebras as structures
in the sense of the previous definition. For a C*-algebra A, we will consider the
unit ball A1 together with the operator norm as the underlying complete metric
space. In terms of the language, for every *-polynomial p(x1, . . . , xn), there will be
an n-ary predicate Rp which is interpreted on An1 by ‖p(x1, . . . , xn)‖. This relation
is Lipschitz with a constant that is independent of the choice of C*-algebra. If
we wish to consider a trace as well then we similarly introduce relations for traces
of all *-polynomials on the unit ball; again, all of these relations are Lipschitz. In
practice, we will use the usual C*-algebraic notation when we deal with C*-algebras
but formally, for the purposes of fitting the continuous Fräıssé context, we will treat
them as above.

Since all of our structures fit into the framework described above, we find it
convenient to give a presentation of Fräıssé theory which is closer to that of [26]
than the more general approach taken in [1]. Our definitions are not identical
to those of either [26] or [1]; see Remark 2.7 for discussion of the differences. In
particular, [26] do not require their metric spaces to be bounded and therefore
their structures are not metric structures in the sense of [2]. In the way that we
are viewing C*-algebras (as their unit balls) the underlying metric is bounded and
therefore their continuous theory is well-defined.

Definition 2.2. Let A be a C*-algebra, and a a tuple from A1. The subalgebra gen-
erated by a is the smallest C*-subalgebra of A which contains a, and is denoted 〈a〉.
We say A is finitely generated if there is a finite tuple a such that A = 〈a〉.

Remark 2.3. The condition that a C*-algebra be finitely generated may be weaker
than it appears. It is known that a large class of separable unital C*-algebras,
including all those which are Z-stable, are generated by single elements (see [36] for
this result and further discussion). In particular, some of the C*-algebras we will
construct as Fräıssé limits will be singly generated.

Definition 2.4. Let K be a class of finitely generated structures with distinguished
generators.

(1) We say that a structure is a K-structure if it is an inductive limit of elements
of K.

(2) The class K has the near amalgamation property (NAP) if whenever
A,B0, B1 ∈ K, and ϕi : A→ Bi are morphisms, then for every ε > 0 there
is a C ∈ K and morphisms ψi : Bi → C such that d(ψ0ϕ0(a), ψ1ϕ1(a)) < ε,
where a is the distinguished generating set of A.

(3) The class K has the amalgamation property (AP) if, in the definition of
NAP, we may take ε = 0.

(4) The class K has the joint embedding property (JEP) if for all A,B ∈ K

there is C ∈ K such that A and B embed into C.

The properties defined above have clear analogues in classical Fräıssé theory. In
the classical setting one works with countable classes of finite structures, in order
to ensure that the resulting limit object is also countable. In the metric setting it
is necessary to replace countability by separability in a suitably chosen topology,
which we now describe. As in [1, Definition 2.10], if K is a class of finitely generated
structures, we denote by Kn the subclass of K consisting of all members of K whose
distinguished generating sets have size n. If K has JEP and NAP, we can define a
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pseudo-metric on Kn by defining

dK(a, b) = inf{dC(a, b) : a, b ∈ C,C ∈ K}

where dC is the distance computed in C (see [1, Definition 2.11]) and ā and b̄ are
the distinguished generators of elements of Kn.

Definition 2.5. A class K of finitely generated structures with JEP and NAP has
the weak Polish Property (WPP) if for each n the pseudo-metric space (Kn, d

K) is
separable.

Finally, we come to the central definitions of Fräıssé classes and Fräıssé limits.

Definition 2.6. A class K of finitely generated structures is a Fräıssé class if it
satisfies JEP, NAP and WPP.

A K-structure M is a Fräıssé limit of the Fräıssé class K if:

(1) M is K-universal : For every A ∈ K there is an embedding of A into M ,
(2) M is approximately K-homogeneous: for all A,B ⊆ M such that A ∼= B,

A,B ∈ K and for every ε > 0 there is an automorphism σ of M such that
if ā and b̄ are the generators of A and B then d(ā, σ(b̄)) < ε.

Remark 2.7. The classes that we are considering are incomplete in the sense of [1,
Definition 2.12]. The completions of our classes will include their Fräıssé limits.
The classes we consider also fail to be hereditary, that is, we will have classes K,
and members A ∈ K with finitely generated substructures B ⊆ A and B 6∈ K. As
a consequence, we do not have the usual correspondence between Fräıssé classes
and ages of homogeneous structures. Nevertheless, our definitions do allow us to
construct limits of Fräıssé classes, and hence obtain interesting information about
the limit objects.

Theorem 2.8. Every Fräıssé class has a Fräıssé limit which is unique up to iso-
morphism.

The proof is a straightforward adaptation of the proofs of Lemma 2.17 and
Theorem 2.19 from [1].

In the discrete setting many (though not all) well-known Fräıssé limits have
theories with quantifier elimination. The main results of [5] show that quantifier
elimination is a rare phenomenon for C*-algebras; in particular, it is shown in [5]
that the only noncommutative C*-algebra with quantifier elimination is M2(C),
so none of the noncommutative C*-algebras we construct as Fräıssé limits in the
subsequent sections have quantifier elimination. In Section 3.2 we show that the
hyperfinite II1 factor R is the Fräıssé limit of matrix algebras viewed as von Neu-
mann algebras. The theory of R also does not have quantifier elimination, as shown
in [18].

We do have one example of a C*-algebra which is a Fräıssé limit whose theory
has quantifier elimination, namely the algebra C(2N) of continuous functions on
the Cantor set. It is straightforward to see that this algebra is the Fräıssé limit
of the class of finite-dimensional commutative C*-algebras (i.e., the algebras of the
form Cn). Quantifier elimination for the theory of C(2N) is proved in [7]. In fact,
by the results of [6], the theory of C(2N) is the only theory of infinite-dimensional
commutative unital C*-algebras which has quantifier elimination.
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3. AF algebras

We now turn to describing several examples of Fräıssé classes of finite-dimensional
C*-algebras. Throughout this section, when we discuss Mn(C) we are considering
it as being n2-generated by the standard matrix units. Recall that a (normalized)
trace on a unital C*-algebra A is a continuous linear functional τ : A → C such
that τ(1) = 1, it is positive (i.e., τ(a∗a) ≥ 0 for all a ∈ A), and τ(ab) = τ(ba) for
all a, b ∈ A. The space of traces of A, T (A), is a weak*-compact and convex subset
of the unit ball of the dual of A. Every unital *-homomorphism between tracial
algebras ϕ : A → B gives rise to the continuous affine map ϕ∗ : T (B) → T (A): if
τ ∈ T (B) and a ∈ A, define

ϕ∗(τ)(a) = τ(ϕ(a)).

This contravariant functor will also play a role in the proof of Lemma 4.4. It is a
well-known fact from linear algebra that each matrix algebra Mn(C) has a unique
trace, and that trace τ is given by τ([ai,j ]) = 1

n

∑n
j=1 aj,j . We will make frequent

and unmentioned use of the following well-known properties of finite-dimensional
C*-algebras.

Fact 3.1. (1) Every finite-dimensional C*-algebra is isomorphic to a finite di-
rect sum of matrix algebras.

(2) If A = Mk1(C) ⊕ · · · ⊕Mkn(C), then every trace on A is a convex combi-
nation of the (unique) traces on Mk1(C), . . . ,Mkn(C).

(3) There is a unital embedding of Mn(C) into Mm(C) if and only if n divides
m. A unital embedding of finite-dimensional algebras A and B is charac-
terized up to unitary conjugacy by the multiplicities with which it maps each
direct summand of A into each direct summand of B (that is, by its Bratteli
diagram; see [4, Section III.2] or [10, Section 4.4]).

When we consider a finite-dimensional algebra Mk1(C)⊕· · ·⊕Mkn(C), we always
consider it as being generated by elements of the form a1⊕ · · · ⊕ an, where the ai’s
vary over the distinguished generators of the Mki(C)’s.

We begin by observing that when we consider classes of finite-dimensional C*-
algebras near amalgamation can be replaced by actual amalgamation.

Lemma 3.2. Let K be a subclass of the class of finite-dimensional C*-algebras.
The following are equivalent:

(1) K has NAP,
(2) K has AP.

Proof. The direction (2) =⇒ (1) is obvious. For the other direction, suppose
that K has NAP. Take A,B1, B2 ∈ K, and let ϕi : A → Bi be morphisms. Write
A = Mn1

(C)⊕ · · · ⊕Mnk
(C). Let

a = ((In1
, 0, . . . , 0), (0, In2

, 0, . . . , 0), . . . , (0, . . . , 0, Ink
))

By definition of NAP, with ε = 1
2 , there is a K-structure C, and maps ψi : Bi → C

such that d(ψ0ϕ0(a), ψ1ϕ1(a)) < ε.
We claim that C satisfies the definition of AP. Consider the Bratteli diagrams

of the embeddings ψ0ϕ0 and ψ1ϕ1 of A into C. If these Bratteli diagrams are
the same, then after conjugating by a unitary we have ψ0ϕ0 = ψ1ϕ1, so C exactly
amalgamates B0 and B1 over A. If the Bratteli diagrams are not the same, then for
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some i the ranks of the matrices ψ0ϕ0(0, . . . , Ini
, . . . , 0)) and ψ1ϕ1(0, . . . , Ini

, . . . , 0)
are not equal. These images are then projections of different ranks, so

‖ψ0ϕ0(0, . . . , Ini , . . . , 0))− ψ1ϕ1(0, . . . , Ini , . . . , 0)‖ = 1,

which contradicts our choice of C. �

In the setting of Banach spaces, the class of all finite-dimensional Banach spaces
is a Fräıssé class, with the Gurarij space as its limit (see [1, Section 3.3]). By
contrast, the class of all finite-dimensional C*-algebras is not a Fräıssé class. The
obstacle to amalgamation comes from considering traces.

Proposition 3.3. The class of finite-dimensional C*-algebras is not a Fräıssé class.

Proof. We show that this class does not have AP. Let A = C⊕C, B = M2(C), and
C = M3(C). Consider the following embeddings ιA,C : A→ C and ιB,C : B → C:

ιA,C(a, b) =

[
a 0
0 b

]
ιB,C(a, b) =

a 0 0
0 b 0
0 0 b

 .
Suppose that D is a finite-dimensional C*-algebra which amalgamates B and C
over A with respect to these embeddings, via embeddings ιB,D and ιC,D. Let x =
ιB,D ◦ ιA,B(1, 0), and note that x = ιC,D ◦ ιA,C(1, 0) by definition of amalgamation.

Let τD be a trace on D. On the image of B in D the trace τD restricts to a
trace, which must be the unique trace τB from B. Therefore,

τD(x) = τB(ιA,B(1, 0)) = τB

([
1 0
0 0

])
=

1

2
.

Similarly, τD restricts to the unique trace τC on the image of C in D. Then we
have

τD(x) = τC(ιA,C(1, 0)) = τC

1 0 0
0 0 0
0 0 0

 =
1

3
.

This contradiction finishes the proof. �

3.1. UHF algebras. If we restrict our attention to subclasses of the class of ma-
trix algebras, we can obtain UHF algebras as Fräıssé limits. Recall that a sep-
arable unital C*-algebra which arises as the direct limit of unital embeddings of
matrix algebras is called a uniformly hyperfinite (UHF) algebra. It is well-known
that UHF algebras are classified by supernatural numbers, that is, formal products∏
p prime p

np , where each np ∈ N∪{∞}; given a UHF algebra A, which is the direct

limit of Mk1(C)→Mk2(C)→ · · · , the associated supernatural number is given by
np = sup { r : pr | ki for some i }. See [10, Chapter 4] for more details.

Theorem 3.4. Every UHF algebra is a Fräıssé limit.

Proof. Let A be a UHF algebra, and write A as the direct limit of matrix algebras
Mn1

(C),Mn2
(C), . . .. As usual, we view each Mni

(C) with its standard matrix
units as generators. Let K = {Mni

(C) : i ∈ N }. We then have

Kn =

{
{Mni

(C)} if n = n2
i for some i

∅ if n 6= n2
i for all i

.
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In particular, it is clear that WPP holds. The class K has a minimal element
Mn1(C), so JEP will be a consequence of AP. To see AP, note that if Mni(C) is
embedded in Mnj (C) and Mnk

(C), and (without loss of generality) nj ≤ nk, then
Mnj

(C) embeds in Mnk
(C) in a way which (up to unitary equivalence) respects the

embedding of Mni
(C). Therefore Mnk

(C) itself serves to amalgamate Mnj
(C) and

Mnk
(C) over Mni

(C).
It is clear from the construction of the Fräıssé limit of K that this limit is a

UHF algebra with the same supernatural number as A, and hence is isomorphic
to A. �

An argument similar to the one in Theorem 3.4 shows that the class of full matrix
algebras with injective (not necessarily unital) *-homomorphisms as morphisms is
a Fräıssé class. The corresponding limit is the (non-unital) C*-algebra of compact
operators on the separable infinite-dimensional Hilbert space [3, Section I.8].

3.2. The hyperfinite II1 factor. In Theorem 3.4 matrix algebras were regarded
as finite-dimensional C*-algebras, but we can also regard them as tracial von Neu-
mann algebras. A tracial von Neumann algebra is a unital C*-algebra M endowed
with a distinguished trace τ such that the unit ball of M is complete with respect

to the trace-norm ‖x‖τ = τ (x∗x)
1
2 . As was shown in [12], tracial von Neumann

algebras can be regarded as metric structures in the language of unital C*-algebras
with the additional predicate symbol for a distinguished trace, where the symbol
for the metric is interpreted as the distance associated with the trace-norm. Since
the operator norm is not uniformly continuous with respect to the trace-norm, it
is no longer part of the structure. A tracial von Neumann algebra is separable if it
is separable with respect to the trace-norm.

A finite factor is a tracial von Neumann algebra (M, τ) such that the center of
M consists only of the scalar multiples of the identity. When M is a finite factor
the trace τ on M is uniquely determined. Full matrix algebras are examples of
finite factors. A finite factor that is not isomorphic to a full matrix algebra is called
a II1 factor. Equivalently, a finite factor is a II1 factor when the trace assumes all
values in [0, 1] on projections.

A II1 factor is hyperfinite if it can be locally approximated (in trace-norm) by full
matrix algebras. The unique hyperfinite II1 factor is traditionally denoted by R, and
can be concretely realized as the direct limit of the direct sequence (M2n(C))n∈N
in the category of tracial von Neumann algebras. The same proof as Theorem 3.4
shows that the class of full matrix algebras regarded as finite factors is a Fräıssé
class. Since a direct limit of finite factors is a finite factor, the Fräıssé limit of the
class of full matrix algebras is the hyperfinite II1 factor R. That is, we have:

Theorem 3.5. The hyperfinite II1 factor R is the Fräıssé limit of the class of full
matrix algebras (regarded as finite factors).

3.3. Finite width algebras. We now return to considering C*-algebras. Through-
out this section we consider finite-dimensional C*-algebras as being unital, so in
particular all the embeddings we consider will be unital *-homomorphisms. To
progress beyond UHF algebras, we need to consider more general classes of finite-
dimensional algebras than just matrix algebras. With the obstacles encountered in
Proposition 3.3 in mind, we make the following definitions.
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Definition 3.6. (1) A finite-dimensional C*-algebra A has width n if A can
be written as a direct sum of exactly n matrix algebras.

(2) A trace τ on a finite-dimensional C*-algebra A is interior if, when τ is
written as a convex combination of the unique traces on the matrix algebras
which appear as direct summands of A, none of the coefficients are 0. The
trace τ is rational if all of these coefficients are rational.

Lemma 3.7. Let A,B,C be finite-dimensional C*-algebras of width n, and let
α, β, γ be rational interior traces on A,B,C, respectively. Let Φ : A → B and
Ψ : A → C be trace-preserving embeddings. Then there exists N ∈ N such that B
and C can be amalgamated into MN (C) over A by trace-preserving embeddings.

Proof. Write A = Mh1
(C) ⊕ · · · ⊕Mhn

(C). For each i, let αi be the unique trace
on Mhi

(C), and let ai ∈ Q be such that α =
∑n
i=1 aiαi. Write B = Ml1(C)⊕ · · · ⊕

Mln(C), and C = Mk1(C) ⊕ · · · ⊕Mkn(C), and denote the traces on B and C by
β =

∑n
i=1 biβi and γ =

∑n
i=1 ciγi, respectively. For each i, j ≤ n, let ti,j be the

multiplicity with which Ai is embedded by Φ in Bj ; similarly, let qi,j be multiplicity
with which Ai is embedded by Ψ in Cj .

A direct computation from the definition of Φ (respectively, Ψ) being trace-
preserving shows that for all 1 ≤ j ≤ n,

(3.1)

n∑
i=1

bi
li
tj,i =

aj
hj

=

n∑
i=1

ci
ki
qj,i.

We consider the conditions necessary to create a trace-preserving amalgamation
of B and C into MN (C). For each 1 ≤ i ≤ n, let si be the multiplicity with
which Mli(C) is embedded in MN (C) by this hypothetical embedding, and let ri
be similarly the multiplicity of the embedding of Mki(C). We immediately see that
we must have

(3.2)

n∑
i=1

lisi = N =

n∑
i=1

kiri.

For the traces β and γ to be preserved (with respect to the unique trace δ on
MN (C)), we must additionally have, for each 1 ≤ j ≤ n,

(3.3) bj

n∑
i=1

lisi = ljsj ,

and

(3.4) cj

n∑
i=1

kiri = kjrj .

Finally, we must make our amalgamation respect Φ and Ψ. It is sufficient to
ensure that each Mhi

(C) from A embeds into MN (C) via B and C with the same
multiplicities. That is, we must satisfy the following for all 1 ≤ j ≤ n:

(3.5)

n∑
i=1

tj,isi =

n∑
i=1

qj,iri.

Finding any positive integers s1, . . . , sn, r1, . . . , rn satisfying 3.2, 3.3, 3.4, and 3.5
will complete the proof.
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If we view Equation 3.3 as a linear system in variables si then the facts that∑n
i=1 bi =

∑n
i=1 ci = 1 and all bi, ci 6= 0 imply that the system of equations 3.3 is

equivalent to

si =
biln
bnli

sn for all i < n,

and similarly Equation 3.4 is equivalent to

ri =
cikn
cnki

rn for all i < n.

Given these conditions, Equation 3.2 reduces to

rn =
lncn
bnkn

sn.

If we choose any sn and define the remaining ri, si as above, straightforward sub-
stitution shows that Equation 3.5 follows from Equation 3.1. Therefore if sn ∈ N
is chosen so that the above formulas for the si, ri all yield integer values, then
Equations 3.2 - 3.5 will be satisfied. �

Proposition 3.8. The class of finite-dimensional algebras of width n ≥ 2 with a
distinguished interior trace has AP. Moreover, we can always choose the amalgam
to have a rational trace.

Proof. Let A,B,C be algebras of width n with distinguished traces α, β, γ, and let
Φ : A→ B and Ψ : A→ C be morphisms which each preserve α. By continuity, and
the fact that α, β, γ are interior, the maps Φ and Ψ each preserve an open neigh-
bourhood of traces around α. Let U be the intersection of these neighbourhoods,
so Φ and Ψ both preserve U .

Let τ1, . . . , τn be rational traces on A which form the vertices of an (n − 1)-
simplex contained in U . Apply Lemma 3.7 to each τi to produce matrix algebras
MN1

(C), . . . ,MNn
(C) which embed B and C over A with trace-preserving embed-

dings. Let D = MN1
(C)⊕· · ·⊕MNn

(C), and embed B and C into D by taking the
direct sum of the embeddings into each Mni(C); let Θ be the resulting embedding
of A into D. The extremal traces on D are mapped by Θ to the τi, so by convexity
there is some interior rational trace δ on D which is mapped by Θ to α. Then
(D, δ) is the required amalgam of B and C over A. �

We can now show that certain classes of finite-dimensional algebras are Fräıssé
classes. To obtain information about the Fräıssé limits we will use the K0 functor.
To each unital C*-algebra A is associated an abelian group K0(A), and to each
embedding f : A→ B an injective group homomorphism K0(f) : K0(A)→ K0(B).
Since we will not explicitly need the construction of K0, we refer the reader to [4],
[30], or [10] for the definition.

Theorem 3.9. For each n ≥ 2, and each interior trace τ on Cn, the class K(n, τ)
of finite-dimensional C*-algebras A of width n with a distinguished interior trace α
such that there is an embedding of Cn into A which preserves τ , is a Fräıssé class.

The Fraïssé limit of K(n, τ) is simple, has a unique trace, and is not self-
absorbing. As an abelian group, the K0 group of the Fräıssé limit is divisible and of
rank n. Hence when n 6= m, the limits of K(n, τ) and K(m,σ) are non-isomorphic.
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Proof. It follows from Proposition 3.8 that this class has AP, and since this class has
a minimal element, JEP is a consequence of AP. By Proposition 3.8 we have count-
ably members of K(n, τ) (namely, finite-dimensional algebras with distinguished
rational traces) such that every other member of K(n, τ) embeds into one of them.
Since the space of substructures of a fixed member of K(n, τ) is separable in dK,
we conclude that K(n, τ) has WPP.

Let A denote the Fräıssé limit of K(n, τ). It is clear from the proof of Proposition
3.8 that whenever a finite-dimensional algebra B appears in the construction of A,
at some future stage there is a finite-dimensional algebra C such that each direct
summand of B embeds into each direct summand of C. By [4, Corollary III.4.3]
the limit A is simple.

At each stage of the amalgamation in the proof of Proposition 3.8 we have a
(B, ρ) ∈ K(n, τ), and we choose an open set around ρ which is preserved by the
relevant embeddings. Given any trace σ on B other than ρ, in a future stage we
may amalgamate with (B, ρ) again, this time choosing an open set around ρ which
does not include σ. So only the trace ρ is preserved to the limit algebra A, and
hence A has a unique trace.

For the remaining claims, we consider K0(A). For any choice of sequence Ak from

K(n, τ) such that A =
⋃
k≥1Ak, we have K0(A) = lim−→K0(Ak) (see [4, Theorem

IV.3.3]). Each Ak is a direct sum of exactly n matrix algebras, so as abelian
groups, K0(Ak) ∼= Zn. The maps in K(n, τ) are embeddings, and so the maps in
the direct limit of K0 groups are injective. For torsion-free groups rank can be
defined directly in terms of linear independence, and it follows that the direct limit
of rank n torsion-free abelian groups via injective maps has rank n; therefore we
have rank(K0(A)) = n.

Finally, we show that A is not self-absorbing. By the Kunneth formula for C*-
algebras [34] there is an injective map K0(A)⊗K0(A)→ K0(A⊗A). As K0(A) has
rank n, we have that K0(A)⊗K0(A) has rank n2, and hence cannot be injected into
the rank n group K0(A). Therefore K0(A⊗A) 6∼= K0(A), and also A 6∼= A⊗A. �

4. The Jiang-Su algebra

The Jiang-Su algebra Z was constructed by Jiang and Su in [20]. This infinite-
dimensional algebra is K-theoretically indistinguishable from the one-dimensional
algebra C. The tensorial absorption of the Z plays a central role in Elliott’s classi-
fication program of nuclear C*-algebras (see e.g. [8] and the introduction to [33]).
Z exhibits many of the properties of a Fräıssé limit. In this section we show that Z

is indeed a Fräıssé limit. We begin with some basic definitions and properties.

Definition 4.1. Fix p, q ∈ N. The dimension drop algebra Zp,q is defined to be
(we identify Mp(C)⊗Mq(C) and Mpq(C))

Zp,q =
{
f ∈ C

(
[0, 1],Mpq(C)

)
: f(0) ∈Mp(C)⊗ 1q and f(1) ∈ 1p ⊗Mq(C)

}
,

considered as a C*-algebra with the operations inherited from C([0, 1],Mpq(C)).
A dimension drop algebra Zp,q is prime if p and q are co-prime.

Prime dimension drop algebras are projectionless (i.e., do not have projections
other than 0 and 1). As an inductive limit of projectionless algebras, Z is projec-
tionless as well, and moreover its K0 coincides with K0 of C.
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Given a probability measure µ on [0, 1] there is a natural trace τµ on Zp,q given
by

τµ(f) =

∫ 1

0

τ(f(t))dµ

where τ is the unique trace on Mpq(C). By using Riesz representation theorem
for bounded linear functionals on C([0, 1]) and the uniqueness of traces on fibres
of Zp,q one shows that all traces of Zp,q are of this form, hence T (Zp,q) is affinely
homeomorphic to the space of probability measures on [0, 1].

We need to remind the reader of a number of facts about measures before we
can define the class K for which Z is a Fräıssé limit. We say that a probability
measure µ on [0, 1] is faithful and diffuse if the function u(t) = µ([0, t]) is a strictly
increasing and continuous. This will imply that the trace defined above as τµ is
faithful and µ is diffuse as a measure i.e. for every F ⊆ [0, 1] with µ(F ) > 0 there
is E ⊂ F such that µ(E) < µ(F ).

Fact 4.2. If µ is a faithful and diffuse probability measure on [0, 1] and u(t) =
µ([0, t]) then for any f ∈ C([0, 1]),∫ 1

0

fdµ =

∫ 1

0

f(u(t))dt

where dt is Lebesgue measure on [0, 1].

We will say that a trace τµ on Zp,q is faithful and diffuse if the associated measure
is.

Fact 4.3. Suppose that τµ and τλ are two faithful and diffuse traces on a prime
dimension drop algebra Zp,q then there is an automorphism σ of Zp,q such that
τµ = τλ ◦ σ.

Proof. It suffices to prove this when λ is Lebesgue measure on [0, 1]. Let u(t) =
µ([0, t]). Then the map σ : Zp,q → Zp,q given by σ(f) = f(u) is easily seen to be
the desired automorphism. �

The class K that we will consider is the class of all pairs (Zp,q, τ) where p and
q are co-prime and τ is a faithful and diffuse trace on Zp,q. The language for this
class will contain the usual language of C*-algebras together with a relation for a
trace.

The original construction of the Jiang-Su algebra was as an inductive limit of
a sequence of prime dimension drop algebras. It has a unique (definable) trace
which when we refer to it, we will call τ . When we consider Z as a structure in
our language with a relation for the trace, we will mean that Z is expanded by
this unique trace. The key properties of Z that we will need are contained in the
following lemmas.

Lemma 4.4. Every (A, τ) ∈ K embeds in a trace-preserving manner into Z. In
fact, Z is an inductive limit of a chain (An, τn) from K where (A0, τ0) = (A, τ). In
particular, Z is a K-structure.

Proof. These facts follow immediately from the main construction in [20]; see
Propositions 2.5 and 2.8 �

The following result is implicit in §3 of [20]; we give a proof for completeness.
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Lemma 4.5. K has the joint embedding property.

Proof. Suppose (p, q) = 1. We will show that A = Zp,q embeds into B = Zpq,k
for any prime k > pq. Because of this inequality, we can write k = ap + bq for
some positve a and b. Define a *-homomorphism ϕ̃ : Zp,q → C([0, 1],Mpqk(C)) as
follows, for t ∈ [0, 1]:

ϕ̃(f)(t) =



f(0) . . . 0
...

. . .
...

0 . . . f(0)
f(t) . . . 0

...
. . .

...
0 . . . f(t)


where there are ap copies of f(0) and bq copies of f(t) on the diagonal. ϕ̃(f)(0) =
f(0)⊗id and we can find a unitary u(1) such that u∗(1)ϕ̃(f)u(1) ∈ id⊗Mk(C). If we
choose a continuous path of unitaries u on [0, 1] from id to u(1) then ϕ(f) = u∗ϕ̃(f)u
is our desired map. We now want to see that ϕ can be chosen to be trace-preserving
in our class K. In light of Fact 4.3, if τ is the trace induced on B by Lebesgue
measure, we need to show that τ restricted to the image of A under ϕ is a faithful
and diffuse trace on A. But from the form of ϕ̃, this is clear.

Finally, suppose (p, q) = 1 and (p′, q′) = 1. Let n be a common multiple of pq
and p′q′ and k some prime bigger than n. Then from above, both Zp,q and Zp′,q′

embed into Zn,k preserving any faithful and diffuse trace. �

The following lemma will be critical for establishing that K has the near amal-
gamation property. Here, if u is a unitary, Ad (u) : x 7→ uxu∗ denotes the inner
automorphism associated with u.

Lemma 4.6. Suppose that A ∈ K and ϕ,ψ : A → Z are trace-preserving embed-
dings. If ā ∈ A and ε > 0, then there is a unitary u ∈ Z such that

‖(Ad(u) ◦ ϕ)(ā)− ψ(ā)‖ < ε

Proof. This is an immediate consequence of Robert’s [29, Theorem 1.0.1] once we
make some observations. Theorem 1.0.1 proves a result about algebras that are
noncommutative CW (NCCW) complexes and ones which have stable rank one.
Dimension-drop algebras are examples of NCCW complexes. In order for an algebra
to be stable rank one, the invertible elements of that algebra must be dense. We
shall check the assumptions of Robert’s theorem hold for Z. Every invertible in Zp,q
is a continuous function from [0, 1] into the set of invertible elements of Mpq(C).
Since invertible elements are dense in Mpq(C), it is an exercise in topology of [0, 1] to
show that the invertible elements are dense in Zp,q. Since every unitary in Mpq(C)
is of the form exp(ia) for a self-adjoint a, a similar exercise shows that every unitary
in Zp,q is of the form exp(ia) for a self-adjoint a and in particular that the unitary
group of Zp,q is connected. This shows that the group K1 of Zp,q is trivial (this
is the only fact about K1 that we will need; we refer the reader to [30] for more
information). In particular Z is an inductive limit of NCCW complexes with trivial
K1 and is stable rank one.

Since prime dimension drop algebras are projectionless so is their inductive
limit, Z. Additionally, Z has a unique trace τ and two positive elements a and
b in Z are approximately unitarily equivalent if and only if τ(an) = τ(bn) for all n.
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A very special case of Robert’s theorem [29, Theorem 1.0.1] implies that if A
has stable rank 1 and B is an inductive limit of NCCW complexes with trivial K1,
unique trace, and the above property of Z, then the following hold (see §3 for the
definition of Φ∗).

(1) For every trace σ of A there is a unital *-homomorphism ϕ : A → B such
that ϕ∗(τ) = σ.

(2) Two homomorphism ϕ,ψ : A → B are approximately unitarily equivalent
if and only if ϕ∗(τ) = ψ∗(τ).

The lemma now follows. �

We can now prove the main result.

Theorem 4.7. The Jiang-Su algebra Z with its distinguished trace is the Fräıssé
limit of the Fräıssé class K.

Proof. This is automatic by Lemma 4.6 if we can see that K is a Fräıssé class.
Lemma 4.5 directly shows that K has the joint embedding property. Since every
element of K embeds into Z, K has the weak Polish property. We are left to show
that K satisfies the near amalgamation property. Towards this end, suppose that
A,B and C are in K and that ϕ : A→ B and ψ : A→ C. By Lemma 4.5, we can
choose D ∈ K and maps ϕ′ : B → D and ψ′ : C → D. Now by Lemma 4.4, we can
assume that Z is an inductive limit of Dn from K such that D0 = D. So resetting
the notation, we have maps ϕ,ψ from A into D and D begins an inductive chain
〈Dn : n ∈ N〉 leading to Z. By Lemma 4.6, for a fixed ε > 0 there is a unitary u ∈ Z
such that

‖(Ad(u) ◦ ϕ)(ā)− ψ(ā)‖ < ε/3

where ā are generators for A. By the definability of unitaries, there is some n ∈ N
and some unitary u′ ∈ Dn so that ‖u − u′‖ < ε/3. Dn will now work as the near
amalgam of ϕ and ψ. �

Remark 4.8. Although this proof shows that the Jiang-Su algebra is a Fräıssé limit,
it is a bit unsatisfactory in that it uses the existence of the algebra itself to establish
the key properties of the Fräıssé class. Additionally, it relies heavily on [29] in order
to prove near amalgamation. In an earlier version of the present paper we asked
whether there was a self-contained proof that K is a Fraisse class. Such a proof was
found by Masumoto in [25].

5. Lévy automorphism groups

A Polish group G is extremely amenable if every continuous action of G on a
compact space has a fixed point (see [27]). Suppose that (Hn, dn)n∈N is a sequence
of compact metric groups equipped with their normalized Haar measures µHn

. The
sequence (Hn)n∈N has the Lévy concentration property if for any sequence An ⊂ Hn

of Borel subsets such that lim infn µHn
(An) > 0 and for every ε > 0

lim
n→∞

µHn
{x ∈ Hn : ∃a ∈ An, d (a, x) ≤ ε} = 1;

see also [27, Definition 1.2.6 and Remark 1.2.9]. A Polish group is Lévy if it admits
an increasing sequence (Hn)n∈N of compact subgroups with dense union with the
Lévy concentration property with respect to the metrics induced by a compatible
metric on G. Every Lévy group is extremely amenable [27, Theorem 4.1.3].
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If M is a II1 factor then the automorphism group Aut(M) of M is a Polish group
with respect to the topology of pointwise convergence in trace-norm. Similarly if
A is a separable C*-algebra then the automorphism group Aut(A) of A is a Polish
group with respect to the topology of pointwise convergence in norm.

Let Un denote the unitary group of Mn(C). It can be naturally identified with
a subgroup of the unitary group of both the hyperfinite II1 factor R, as well as of
the unitary group of a UHF algebra whose supernatural number is divisible by n.
The metrics induced by these embeddings correspond to the trace-norm and to the
operator norm, respectively. The groups SUn = {u ∈ Un : det(u) = 1} form a Lévy
sequence with respect to either metric ([27, Theorem 4.1.14]). We note that all
automorphisms of Mn(C) are inner and that Aut(Mn(C)) is naturally isomorphic
to SUn, via u 7→ Adu.

The proof of the first two parts of the following Proposition are well-known (cf.
[15]), but for the convenience of the reader we include outlines of their proofs, as
well as a more detailed proof of the third claim.

Proposition 5.1. The automorphism groups of

(1) the hyperfinite II1 factor,
(2) UHF algebras, and
(3) the AF algebras obtained in Theorem 3.9

are Lévy and, in particular, extremely amenable.

Proof. By the above, for n ∈ N the group Hn := {Adu : u ∈ SUn} can be identified
with a compact subgroup of Aut(R). These groups have the Lévy approximation
property, and since

⋃
n∈N Un is dense U(R) and all automorphisms of R are approx-

imately inner,
⋃
nHn is dense in Aut(R). Therefore (1) follows.

The proof of (2) is identical, although the groups Hn are now considered with a
different metric.

In order to prove (3), fix m ≥ 2 and let A be one of the AF algebras constructed
in Theorem 3.9 with Bratteli diagram of width m. Since K0 (A) is linearly ordered,
all automorphisms of A are approximately inner by Elliott’s classification of AF
algebras [4, Theorem IV.4.3]. Writing A as an inductive limit of finite-dimensional
algebras An, we represent U(A) as an inductive limit of U(An) and Aut(A) as
an inductive limit of Aut(An). The algebra An is a direct sum of matrix algebras
Mk(i)(C) for 1 ≤ i ≤ m and therefore Aut(An) ∼=

∏
i≤m SUk(i). An inspection of the

proof of Theorem 3.9 shows that limn mini≤m k(i) =∞. It is now an easy exercise
to show that the sequence Aut(An) has the Lévy property, and (3) follows. �

6. A Ramsey theorem for matrix algebras

In this section we deduce from Proposition 5.1 Ramsey-type results for matrix
algebras. We will use the correspondence between extreme amenability of a Fräıssé
limit and the Ramsey property of the corresponding Fräıssé class established in [26,
Theorem 3.10] building on a previous results in the discrete case from [21].

Suppose that K is a Fräıssé class in the sense of Definition 2.4. If A,B are
elements of K with distinguished set of generators ā for A, denote by AB space of
embeddings of A inside B endowed with the metric

ρā (ϕ,ψ) = max
i
d (ϕ(ai), ψ(ai)) .

A coloring of AB is a 1-Lipschitz map γ : AB → [0, 1].
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Suppose that K satisfies the property that AB is compact for every A,B ∈ K.
In this case, the definition of the approximate Ramsey property ([26], Def. 3.3) is
equivalent to: for every A,B ∈ K and every ε > 0, there is C ∈ K such that for any
coloring γ of AC there is β ∈ BC such that γ(β ◦ −) varies by at most ε on AB.

In [26], a version of the following is proved as Proposition 3.4.

Proposition 6.1. Suppose that K is a Fräıssé class with limit M and for all
A,B ∈ K, AB is compact then the following are equivalent:

(1) K has the approximate Ramsey property.
(2) For every A,B ∈ K, ε > 0, and every coloring γ of AM , there is β ∈ BM

such that γ(β◦−) varies by at most ε on AB; we say M has the approximate
Ramsey property.

The following result can be proved with the same methods as [26, Theorem 3.10].

Theorem 6.2. Suppose that M is the limit of a Fräıssé class K. The following
statements are equivalent:

(1) Aut(M) is extremely amenable.
(2) K has the approximate Ramsey property.

Suppose that B is a unital subalgebra of the hyperfinite II1 factor R. Endow the
space Mk(C)B of unital embeddings of Mk(C) into B with the metric

d2 (α, α′) = sup
‖x‖≤1

‖(α− α′) (x)‖2 .

The following is an immediate corollary of Proposition 6.1, Theorem 6.2 and the
extreme amenability of Aut(R).

Theorem 6.3. The class of matrix algebras equipped with the metric d2 and its
Fräıssé limit, R, have the approximate Ramsey property.

Using the extreme amenability of the automorphism groups of infinite type UHF
algebras one can obtain similar results for matrix algebras with respect to the
operator norm. If q =

∏
p p

np for np ∈ {0,∞}, then we denote by Mq the infinite
type UHF algebras with associated supernatural number q. For A ⊂ Mq define
Mk(C)A to be the set of embeddings of Mk (C) into A endowed with the metric

d (α, α′) = sup
‖x‖≤1

‖(α− α′) (x)‖ .

Theorem 6.4. For any supernatural number q, both Mq and its associated Fräıssé
class have the approximate Ramsey property.

Finally one can use the fact that the algebra K(H) of compact operators is the
Fräıssé limit of the class of full matrix algebras, and that Aut (K(H)) is extremely
amenable to obtain the analogues of the above results where one considers not
necessarily unital injective *-homomorphisms as embeddings. The same results hold
for the finite width AF algebras and their associated Fräıssé classes as described in
section 3.
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7. Future work

Both the Jiang-Su algebra and the infinite type UHF algebras are examples of
strongly self-absorbing C*-algebras ([37]). A unital C*-algebra D is strongly self-
absorbing if there is a sequence of unitaries un in D ⊗D such that

Φ(a) = lim
n
un(a⊗ 1)u∗n

is well-defined for all a ∈ D and Φ is an isomorphism between D and D ⊗D.
In addition to Z and the infinite type UHF algebras, the only other currently

known examples of strongly self-absorbing algebras are the Cuntz algebras O2 and
O∞ together with the tensor products with O∞ and infinite type UHF algebras.
Strongly self-absorbing algebras play a pivotal role in Elliott’s classification program
for nuclear, simple, separable, unital C*-algebras (see [31, Chapters 5 and 7] for the
role of O2 and O∞ and the more recent [8] and [33] for the role of Z) These algebras
also have remarkable model-theoretic properties (see [9, §2.2 and §4.5] and [11]).
Every strongly self-absorbing C*-algebra is an atomic model of its theory, and all
atomic models can be viewed as Fräıssé limits of their type space. Nevertheless,
strongly self-absorbing C*-algebras share a number of properties with the Fräıssé
limits not common to all atomic models, and it is natural to conjecture that all
known, and perhaps all, strongly self-absorbing algebras can be construed as Fräıssé
limits of Fräıssé classes from which information about their automorphism group
may be extracted.

Problem 7.1. Let A be a strongly self-absorbing C*-algebra. Is A a nontrivial
Fräıssé limit?

Since all strongly self-absorbing algebras are singly generated, and O2 is moreover
the universal algebra with two generators satisfying particularly simple relations,
it may be necessary to consider Fräıssé categories other than C*-algebras, such as
(unital) operator spaces (see [24]).

The important first step in proving that a nuclear algebra A is strongly self-
absorbing is to prove that it is tensorially self-absorbing, i.e., that A ⊗ A ∼= A.
Proofs that O2 and Z enjoy this property are nontrivial, and Elliott’s proof that
O2 ⊗ O2

∼= O2 in particular precipitated remarkable progress (see [31], [8]).
In the case of Z, we note that if one considers the class K of dimension-drop

algebras with distinguished traces as used in Section 4, we could modify the con-
struction by considering a new class K′ which is just the closure of K under taking
finite tensor products together with the induced traces. It would be interesting to
know if this class is a Fräıssé class. If so, this would give a direct proof that Z is
self-absorbing.

It is possible that viewing other strongly self-absorbing algebras as Fräıssé limits
may result in new proofs of tensorial self-absorbtion. Such proofs would give infor-
mation about these algebras, and this technique may also be useful in understanding
Jacelon’s non-unital analogue of Z ([19]).

Problem 7.2. Is Jacelon’s simple, monotracial, stably projectionless C*-algebra W

a nontrivial Fräıssé limit? Is W⊗W ∼= W?

The construction of W resembles the construction of Z, with the role of dimension-
drop algebras being played by the so-called Razak building blocks ([28]).

Another goal of this research is to shed new light on the automorphisms groups
of strongly self-absorbing C*-algebras such as Z, O2, and O∞. For example an
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affirmative answer to Problem 7.1 would be a first step towards the solution of the
following problem.

Problem 7.3. SupposeA is strongly self-absorbing. Is Aut(A) extremely amenable?

Problem 7.4 ([32, Question 9.1]). Is Aut(O2) a universal Polish group?

Note that [13, Theorem 7.4] and the main result of [32] together imply that
Aut(O2) induces the universal orbit equivalence relation for Polish group actions.
Moreover by Kirchberg’s O2-absorption theorem [22] every simple, separable, nu-
clear and unital C*-algebra A satisfies A ⊗ O2

∼= O2. In particular the auto-
morphism group of A embeds into the automorphism group of O2 via the map
α 7→ α⊗ idO2 .
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tifiques de l’École Normale Supérieure. Troisième Série 71 (1954), 363–388.
15. T. Giordano and V. Pestov, Some extremely amenable groups, Comptes Rendus Mathematique

334 (2002), no. 4, 273–278.

16. J. G. Glimm, On a certain class of operator algebras, Transactions of the American Mathe-
matical Society 95 (1960), no. 2, 318–340.

17. M. Gromov, Filling Riemannian manifolds, Journal of Differential Geometry 18 (1983), no. 1,
1–147.

18. B. Hart, I. Goldbring, and T. Sinclair, The theory of tracial von Neumann algebras does not
have a model companion, J. Symb. Logic 78 (2013), no. 3, 1000–1004.

19. B. Jacelon, A simple, monotracial, stably projectionless C*-algebra, Journal of the London

Mathematical Society 87 (2013), 365–383.



18 C.J. EAGLE, I. FARAH, B. HART, B. KADETS, V. KALASHYK, AND M. LUPINI

20. X. Jiang and H. Su, On a simple unital projectionless C∗-algebra, American Journal of Math-

ematics 121 (1999), 359–413.

21. A. S. Kechris, V. Pestov, and S. Todorcevic, Fräıssé limits, Ramsey theory, and topological
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