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Abstract. We present unified proofs of several properties of the

corona of σ-unital C*-algebras such as AA-CRISP, SAW*, being sub-σ-

Stonean in the sense of Kirchberg, and the conclusion of Kasparov’s Tech-
nical Theorem. Although our results were obtained by considering C*-

algebras as models of the logic for metric structures, the reader is not

required to have any knowledge of model theory of metric structures (or
model theory, or logic in general). The proofs involve analysis of the extent

of model-theoretic saturation of corona algebras.

Résumé. Nous présentons des démonstrations unifiées de plusieurs
propriétés de la corona des C*-alg‘ebres σ-unitales tel qu’AA-CRISP,

SAW*, étant sous-σ-Stonean au sens de Kirchberg, et la conclusion du

théorème technique de Kasparov. Bien que nos résultats aient été obtenus
en considérant les C*-alg‘ebres comme modèles de la logique pour les

structures métriques, le lecteur n’est pas requis d’avoir aucune connaissance

de la théorie des modèles des structures métriques (ou la théorie des
modèles, ou de la logique en général). Les démonstrations impliquent

l’analyse de l’ampleur de la saturation modèle-théorétique des algèbres de

corona.

We shall investigate the degree of countable saturation of coronas (see Defi-
nition 1.1 and paragraph following it). This property is shared by ultraproducts
associated with nonprincipal ultrafilers on N in its full form. The following sum-
marizes our main results. All ultrafilters are nonprincipal ultrafilters on N.

Theorem 1. Assume a C*-algebra M is in one of the following forms:

(1) the corona of a σ-unital C*-algebra,
(2) an ultraproduct of a sequence of C*-algebras,
(3) an ultrapower of a C*-algebra,
(4)

∏
nAn/

⊕
nAn, for unital C*-algebras An,

(5) the relative commutant of a separable subalgebra of an algebra that is in one
of the forms (1)–(4).

Then M satisfies each of the following (see below for definitions):
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(6) It is SAW*
(7) It has AA-CRISP (asymptotically abelian, countable Riesz separation prop-

erty),
(8) The conclusion of Kasparov’s technical theorem,
(9) It is sub-σ-Stonean in the sense of Kirchberg,
(10) Every derivation of a separable subalgebra of M is of the form δb for some

b ∈M .

Proof. Each of these classes of C*-algebras is countably degree-1 saturated
(Definition 1.1). For (1) this is Theorem 1.4, proved in §3. For (2) and (3) this
is a consequence of  Los’s theorem (see e.g., [9, Proposition 4.11]). Every algebra
as in (4) is the corona of

⊕
nAn so this is a special case of (1). For (5) this is

Lemma 2.4.
Property (6) now follows by Proposition 2.7, (7) follows by Proposition 2.6,

(8) follows by Proposition 2.8, (9) follows by Proposition 2.11, and (10) follows
by Proposition 2.12. �

The assertion ‘every approximately inner automorphism of a separable subal-
gebra of M is implemented by a unitary in M ’ is true for algebras as in (2), (3)
or the corresponding instance of (4) (Lemma 2.15). However this is not true in
the case when M is the Calkin algebra (see Proposition 4.2).

By [11] no SAW*-algebra can be written as a tensor product of two infinite-
dimensional C*-algebras. By Theorem 1, this applies to every C*-algebra M
satisfying any of (1)–(5).

Organization of the paper In §1 we introduce terminology and state the main
results. Applications are given in §2, and proofs of the main results are in §3. In
§4 we demonstrate that the degree of saturation of the Calkin algebra is rather
mild. In §5 we list several open problems.

1. Introduction For F ⊆ R and ε > 0 we write Fε = {x ∈ R : dist(x, F ) ≤
ε}. Given a C*-algebra A, a degree 1 *-polynomial in variables xj , for j ∈ N,
with coefficients in A is a linear combination of terms of the form axjb, ax

∗
j b and

a with a, b in A. We write M≤1 for the unit ball of a C*-algebra M .

Definition 1.1. A metric structure M is countably degree-1 saturated if for
every countable family of degree-1 *-polynomials Pn(x̄) with coefficients in M
and variables xn, for n ∈ N, and every family of compact sets Kn ⊆ R, for n ∈ N,
the following are equivalent.

(1) There are bn ∈M≤1, for n ∈ N, such that Pn(b̄) ∈ Kn for all n.
(2) For every m ∈ N there are bn ∈M≤1, for n ∈ N, such that Pn(b̄) ∈ (Kn)1/m

for all n ≤ m.

More generally, if Φ is a class of *-polynomials, we say that M is countably
Φ-saturated if for every countable family of *-polynomials Pn(x̄) in Φ with co-
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efficients in M and variables xn, for n ∈ N, and every family of compact sets
Kn ⊆ R, for n ∈ N the assertions (1) and (2) above are equivalent.

If Φ is the class of all *-polynomials then instead of Φ-saturated we say count-
ably quantifier-free saturated.

Note that by compactness we obtain an equivalent definition if we require
each Kn to be a singleton.

With the obvious definition of ‘degree-n saturated’ one might expect to have
a proper hierarchy of levels of saturation. However, this is not the case.

Lemma 1.2. An algebra that is degree-2 saturated is necessarily quantifier-free
saturated.

Proof. Assume C is degree-2 saturated and t is a consistent countable quanti-
fier-free type over C. By compactness and the Stone–Weierstrass approximation
theorem we may assume that t consists of formulas of the form ‖P (x̄)‖ = r for
a polynomial P . By adding a countable set of new variables {zi} and formulas
‖xy − zi‖ = 0 for distinct variables x and y occurring in t, one can reduce the
degree of all polynomials occurring in t. By repeating this procedure countably
many times one obtains a new type t′ in countably many variables such that
t′ does not contain polynomials of degree higher than 2, it is consistent, and a
realization of t′ gives a realization of t. �

In the following it is assumed that each Pn is a *-polynomial with coefficients
in M , and reference to the ambient algebra M is omitted whenever it is clear
from the context. An expression of the form Pn(x̄) ∈ Kn is called a condition
(over M). A set of conditions is a type (over M). If all conditions involve only
polynomials in Φ then we say that the type is a Φ-type. If all coefficients of
polynomials occurring in type t belong to a set X ⊆ M then we say t is a type
over X. A type satisfying (2) is approximately finitely satisfiable (in M), or more
succinctly consistent with M , and a type satisfying (1) is realized (in M) by b̄.
In the latter case we also say that M realizes this type. Thus M is countably
Φ-saturated if and only if every consistent Φ-type over a countable subset of M
is realized in M .

Remark 1.3. We use the term ‘expression’ instead of ‘formula’ in order to
avoid confusion with formulas of the logic for metric structures. Also, the ex-
pressions ‖P (x̄)‖ = r and ‖P (x̄)‖ ≤ r are identified with conditions (using the
terminology of [4]) ‖P (x̄)‖ ∈ {r} and ‖P (x̄)‖ ∈ [0, r], respectively. Finally,
instead of ‖P (x̄)−Q(x̄)‖ = 0 we write P (x̄) = Q(x̄).

Recall that the multiplier algebra M(A) of a C*-algebra A is defined to be
the idealizer of A in any nondegenerate representation of A (see e.g., [5]). The
corona of A is the quotient M(A)/A.

Theorem 1.4. If A is a σ-unital C*-algebra then its corona C(A) is countably
degree-1 saturated.
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Theorem 1.4 will be proved in §3.1.

Corollary 1.5. If A is a σ-unital C*-algebra then Mn(C(A)) is countably
degree-1 saturated for every n ∈ N.

Proof. The universality property of the multiplier algebra easily implies that
M(Mn(A)) and Mn(M(A)) are isomorphic, via the natural isomorphism that
fixes A. Therefore Mn(C(A)) is isomorphic to C(Mn(A)) and we can apply
Theorem 1.4. �

The following will be proved as Theorem 3.1.

Theorem 1.6. Assume A is a σ-unital C*-algebra such that for every separable
subalgebra B of M(A) there is a B-quasicentral approximate unit for A consisting
of projections. Then its corona C(A) is countably quantifier-free saturated.

We shall show that the Calkin algebra fails the conclusion of Theorem 1.6, and
therefore that Theorem 1.4 essentially gives an optimal conclusion in its case.

2. Applications Most of our applications require only types with a single
variable, or so-called 1-types. We shall occasionally use shortcuts such as a = b
for ‖a− b‖ = 0 or a ≤ b for b− a being positive (the latter assuming both a and
b are positive) in order to simplify the notation. We say that c ε-realizes type t
if for all conditions ‖P (x)‖ ∈ K in t we have ‖P (c)‖ ∈ (K)ε. Therefore a type
is consistent if and only if each of its finite subsets is ε-realized for each ε > 0.

2.1. A self-strengthening We start with a self-strengthening of the notion of ap-
proximate finite satisfiability, stated only for 1-types. An obvious generalization
to arbitrary types is left to the reader.

Lemma 2.1. If Φ includes all degree-1 *-polynomials and C is countably Φ-
saturated then every countable Φ-type t that is approximately finitely satisfiable
by self-adjoint (positive) elements is realized by a self-adjoint (positive) element.

Moreover, if t is approximately finitely satisfiable by self-adjoint elements
whose spectrum is included in the interval [r, s], then t is realized by a self-adjoint
element whose spectrum is included in [r, s].

Proof. If t is approximately finitely satisfiable by a self-adjoint element, then
the type t1 obtained by adding x = x∗ to t is still approximately finitely satisfi-
able and countable, and therefore realized. Any realization of t1 is a self-adjoint
realization of t.

Now assume t is approximately finitely satisfiable by positive elements. By
compactness, there is r ∈ K such that t ∪ {‖x‖ = r} is approximately finitely
satisfiable by a positive element. Let t2 = t ∪ {‖x‖ = r, x = x∗, ‖x− r · 1‖ ≤ r}.
A simple continuous functional calculus argument shows that for a self-adjoint
b we have that b ≥ 0 if and ony if ‖b − ‖b‖ · 1‖ ≤ ‖b‖. The proof is completed
analogously to the case of a self-adjoint operator.
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Now assume t is approximately finitely satisfiable by elements whose spectrum
is included in [r, s]. Add conditions ‖x−x∗‖ = 0 and ‖x− (r+ s)/2‖ ≤ (s− r)/2
to t. The second condition is satisfied by a self-adjoint element iff its spectrum
is included in the interval [r, s]. Therefore the new type is approximately finitely
satisfiable and its realization is as required. �

Note that the assumption of Lemma 2.2 is necessarily stronger than the as-
sumption of Lemma 2.1 by results of §4.

Lemma 2.2. If C is countably quantifier-free saturated then every countable
quantifier-free type that is approximately finitely satisfiable by a unitary (projec-
tion) is realized by a unitary (projection, respectively).

Proof. This is just like the proof of Lemma 2.1, but adding conditions xx∗ = 1
and x∗x = 1 in the unitary case and x = x∗ and x2 = x in the projection case. �

In Proposition 4.1 and Proposition 4.2 we prove that there is a countable type
over the Calkin algebra that is approximately finitely satisfiable by a unitary but
not realized by a unitary. By Lemma 2.2, the Calkin algebra is not quantifier-free
saturated.

2.2. Largeness of countably saturated C*-algebras If C is a finite-dimensional
C*-algebra then its unit ball is compact, and this easily implies that C is count-
ably saturated.

Proposition 2.3. If C is countably degree-1 saturated then it is either finite-
dimensional or nonseparable. In the latter case, C even has no separable maximal
abelian subalgebras.

Proof. Assume C is infinite-dimensional and let A be its masa. Then A is
infinite-dimensional and there is a sequence of positive operators an, for n ∈ N,
of norm 1 such that ‖am − an‖ = 1 (cf. [16] or [10, Lemma 5.2]).

Assume A is separable, and fix a countable dense subset bn, for n ∈ N, of its
unit ball. The type t consisting of all conditions of the form ‖x− bn‖ ≥ 1/2 and
xbn = bnx, for n ∈ N, together with ‖x‖ = 1, is consistent. This is because each
of its finite subsets is realized by am for a large enough m. Otherwise, there
are n, i and j such that ‖bn − ai‖ < 1/2 and ‖bn − aj‖ < 1/2. By countable
saturation some c ∈ C realizes t. Then c ∈ A′ \ A, contradicting the assumed
maximality of A. �

Lemma 2.4. Assume C is countably Φ-saturated and Φ includes all degree-1
polynomials. If A is a separable subalgebra of C then the relative commutant of
A is countably Φ-saturated.

Moreover, if C is infinite-dimensional then A′ ∩ C is nonseparable.

Proof. Let an, for n ∈ N, enumerate a countable dense subset of the unit
ball of A. The relative commutant type over A, trc, consists of all formulas of
the form



40 I. Farah and B. Hart

‖anx− xan‖ = 0, for n ∈ N.

If t is a finitely approximately finitely satisfiable Φ-type over A′ ∩C then t∪ trc
is an approximately finitely satisfiable Φ-type over C. Also, an element c of C
realizes t∪ trc if and only if c ∈ A′ ∩C and c realizes t. Since t was an arbitrary
Φ-type, countable Φ-saturation of A′ ∩ C follows.

Now assume C is infinite-dimensional. By enlarging A if necessary, we can
assume it is infinite-dimensional. Expand trc by adding all formulas of the form

(ii) ‖anx− an‖ ≥ 1/2.

We denote the resulting type by t. We shall prove that t is approximately
finitely satisfiable. This follows from the proof of [10, Lemma 5.2] and we refer
the reader to this paper for details. First, if A is a continuous trace, infinite-
dimensional algebra then its center Z(A) is infinite-dimensional. Therefore Z(A)
includes a sequence of contractions fn, for n ∈ N, such that ‖fm − fn‖ = 1 if
m 6= n (this is a consequence of Gelfand–Naimark theorem, see e.g., the proof of
[10, Lemma 5.4]), and therefore t is approximately finitely satisfiable by fms.

If A is not a continuous trace algebra, then by [1, Theorem 2.4] it has a
nontrivial central sequence. Elements of such a sequence witness that t is ap-
proximately finitely satistiable.

By countable saturation, t is realized in C. A realization of t in C is at a
distance ≥ 1/2 from A, and therefore we have proved that A′ ∩ C 6⊆ A.

Now assume A is a separable, not necessarily infinite-dimensional, subalgebra
of C. Since C is infinite-dimensional, find infinite-dimensional A0 such that A ⊆
A0 ⊆ C. By using the above, build an increasing chain of separable subalgebras
of C, Aγ , for γ < ℵ1, such that A′γ ∩ Aγ+1 is nontrivial for all γ. This shows
that A′ ∩ C intersects Aγ+1 \Aγ for all γ, and it is therefore nonseparable. �

2.3. Properties of countably degree-1 saturated C*-algebras In the following
there is a clear analogy with the theory of gaps in P(N)/Fin.

Definition 2.5. Two subalgebras A,B of an algebra C are orthogonal if ab = 0
for all a ∈ A and b ∈ B. They are separated if there is a positive element c ∈ C
such that cac = a for all a ∈ A and cb = 0 for all b ∈ B.

A C*-algebra C has AA-CRISP (asymptotically abelian, countable Riesz sep-
aration property) if the following holds: Assume an, bn, for n ∈ N, are positive
elements of C such that

an ≤ an+1 ≤ bn+1 ≤ bn

for all n. Furthermore assume D is a separable subset of C such that for every
d ∈ D we have

lim
n
‖[an, d]‖ = 0.

Then there exists a positive c ∈ C such that an ≤ c ≤ bn for all n and [c, d] = 0
for all d ∈ D.
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By Theorem 1.4 the following is a strengthening of the result that every corona
of a σ-unital C*-algebra has AA-CRISP ([18, Corollary 6.7]).

Proposition 2.6. Every countably degree-1 saturated C*-algebra C has AA-
CRISP.

Proof. By scaling, we may assume that ‖b1‖ = 1. Fix a countable dense
subset {dn} of D and let t be the type consisting of the following conditions:
an ≤ x, x ≤ bn and [dn, x] = 0, for all n ∈ N. If t0 is any finite subset of t and
ε > 0, then for a large enough n we have that an ε-approximately realizes t0. By
countable saturation of C, some c ∈ C realizes t. This c satisfies the requirements
of the AA-CRISP for an, bn and D. �

Recall that a C*-algebra C is an SAW*-algebra if any two σ-unital subalgebras
A and B of C are orthogonal if and only if they are separated. By Theorem 1.4
the following is a strengthening of the result that every corona of a σ-unital C*-
algebra is an SAW*-algebra ([18, Corollary 7.5]). (By [18, Theorem 7.4], CRISP
implies SAW* but we include a simple direct proof below.)

Proposition 2.7. Every countably degree-1 saturated C*-algebra C is an
SAW*-algebra.

Proof. Assume A and B are σ-unital subalgebras of C such that ab = 0 for
all a ∈ A and all b ∈ B. Let an, for n ∈ N and bn, for n ∈ N, be an approximate
identity of A and B, respectively. Consider type tAB consisting of the following
expressions, for all n.

(i) anx = an,

(ii) xbn = 0

(iii) x = x∗.

Every finite subset of tAB is ε-realized by an for a large enough n. If c realizes
tAB , then ac = a for all a ∈ A and cb = 0 for all b ∈ B. Moreover, c is self-adjoint
by (iii) and |c| still satisfies the above. �

Assume B, C and D are subalgebras of a C*-algebra M . We say that D
derives B if for every d ∈ D the derivation δd(x) = dx− xd maps B into itself.
The following is an extension of Higson’s formulation of Kasparov’s Technical
Theorem ([14], also [18, Theorem 8.1]).

We say that a C*-algebra M has KTT if the following holds: Assume A,B,
and C are subalgebras of M such that A ⊥ B and C derives B. Furthermore
assume A and B are σ-unital and C is separable. Then there is a positive element
d ∈M such that d ∈ C ′∩M , the map x 7→ xd is the identity on B, and the map
x 7→ dx annihilates A.

Proposition 2.8. Every countably degree-1 saturated C*-algebra has KTT.
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Proof. Assume A,B and C are as above. Since B is σ-unital we can fix a
strictly positive element b ∈ B. Then b1/n, for n ∈ N, is an approximate unit for
B. An easy computation demonstrates that for every c ∈ C the commutators
[b1/n, c] strictly converge to 0 (see the first paragraph of the proof of Theorem
8.1 in [18]). They therefore converge to 0 weakly. The Hahn–Banach theorem
combined with the separability of C now shows that one can extract an approx-
imate unit (em) for B in the convex closure of {b1/n : n ∈ N} such that the
commutators [em, c] norm-converge to 0 for every c ∈ C.

In other words, B has an approximate unit (em) which is C-quasicentral. Fix
a countable approximate unit (fn) of A and a countable dense subset {cm} of C.
Consider the type t consisting of the following conditions, for all m and all n.

‖enx− en‖ = 0

‖xfn‖ = 0

‖[cm, x]‖ = 0

‖x− x∗‖ = 0.

For every finite subset F of this type and every ε > 0 there exists an m large
enough so that all the conditions in F are ε-satisfied with x = em. Therefore the
type t is consistent and by countable degree-1 saturation it is satisfied by some
d0. Then d = |d0| is as required. �

A C*-algebraM is sub-Stonean if for all b and c inM such that bc = 0 there are
positive contractions f and g such that bf = b, gc = c and fg = 0. By considering
B = C∗(b) and C = C∗(c) and noting that B and C are orthogonal, one easily
sees that every SAW* algebra is sub-Stonean. The following strengthening was
introduced by Kirchberg [15].

Definition 2.9. A C*-algebra C is sub-σ-Stonean if for every separable sub-
algebra A of C and all positive b and c in C such that bAc = {0} there are
contractions f and g in A′ ∩ C such that fg = 0, fb = b and gc = c.

The fact that for a separable C*-algebra A the relative commutant of A in
its ultrapower associated with a nonprincipal ultrafilter on N (as well as the
related algebra F (A) = (A′ ∩ AU )/Ann(A,AU ), see [15]) is sub-σ Stonean was
used in [15] to deduce many other properties of the relative commutant. Several
proofs in [15], in particular the ones in the appendix, can easily be recast in the
language of logic for metric structures.

Before we strengthen Kirchberg’s result by proving countably degree-1 satu-
rated algebras are sub-σ-Stonean (Proposition 2.11) we prove a lemma.

Lemma 2.10. Assume M is countably degree-1 saturated and B is a separable
subalgebra. If I is a (closed, two-sided) ideal of B then there is a contraction
f ∈M ∩B′ such that af = a for all a ∈ I.

If moreover c ∈M is such that Ic = {0}, then we can choose f so that fc = 0
and fIc = {0}.
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Proof. Fix a countable dense subset an, for n ∈ N, of I and a countable
dense subset bn, for n ∈ N, on B. Consider type t consisting of the following
conditions.

(1) ‖anx− an‖ = 0 for all n ∈ N,
(2) ‖bnx− xbn‖ = 0 for all n ∈ N.
(3) xc = 0, and
(4) xanc = 0 for all n ∈ N.

We prove that t is consistent, and moreover that it is finitely approximately
satisfiable by a contraction. By [2] I has a B-quasicentral approximate unit en,
for n ∈ N, consisting of positive elements. Since Bc = {0} we have enc = 0,
as well as enamc = 0 for all m and all n. Therefore every finite fragment of
t is arbitrarily well approximately satisfiable by en for all large enough n. By
Lemma 2.1 (applied with [r, s] = [0, 1]) and saturation of M there is a contraction
f ∈ M that realizes t. Then fa = a for all a ∈ I, f ∈ B′ ∩M , fAc = {0}, and
fc = 0, as required. �

Proposition 2.11. Every countably degree-1 saturated C*-algebra is sub-σ-
Stonean.

Proof. Fix A, b and c as in Definition 2.9. By applying Lemma 2.10 find
a contraction f ∈ M ∩ A′ such that bf = b, fc = 0 and fAc = {0}. Now
let C = C∗(A, c) and let J be the ideal of C generated by c. By applying
Lemma 2.10 again (with left and right sides switched) with c replaced by f we
find a contraction g ∈M ∩A′ such that fg = 0, and gc = c. �

By Theorem 1.4 the following is a strengthening of the result that every
derivation of a separable subalgebra of the corona of a σ-unital C*-algebra is
inner ([18, Theorem 10.1]).

Proposition 2.12. Assume C is a countably degree-1 saturated C*-algebra and
B is a separable subalgebra. Then every derivation δ of B is of the form δc for
some c ∈ C.

Proof. Fix a countable dense subset B0 of B. Consider the type tδ consisting
of following conditions, for b ∈ B0.

(i) ‖xb− bx− δ(b)‖ = 0.

By [17, 8.6.12] this type is consistent and if c realizes it then δ(b) = δc(b) for all
b ∈ B. �

2.4. Automorphisms In [21] the authors proved that the Continuum Hypothe-
sis implies that the Calkin algebra has 2ℵ1 outer automorphisms. Since κ < 2κ

for all cardinals κ, this conclusion implies that the Calkin algebra has outer au-
tomorphisms. A simpler proof of Phillips–Weaver’s result was given in [8]. The
proof of Theorem 2.13 below is in the spirit of [21], but instead of results about
KK-theory it uses countable quantifier-free saturation.
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Recall that the character density of a C*-algebra is the smallest cardinality
of a dense subset. The following remark refers to the full countable satura-
tion in logic for countable structures, not considered in the present paper (cf.
[9]). The standard back-and-forth method shows that a fully countably satu-
rated C*-algebra of character density ℵ1 has 2ℵ1 automorphisms. Therefore, the
Continuum Hypothesis implies that M has 2ℵ1 automorphisms whenever M is
an ultrapower of a separable C*-algebra, a relative commutant of a separable
C*-algebra in its ultrapower, or an algebra of the form

∏
nAn/

⊕
nAn for a

sequence of separable unital C*-algebras An, for n ∈ N. Since ℵ1 is always less
than 2ℵ1 , in this situation, the automorphism group is strictly larger than the
group of inner automorphisms. These issues will be treated in an upcoming pa-
per joint with David Sherman. In the following we show how to construct 2ℵ1

automorphisms in a situation where the algebra is only quantifier-free saturated.

Theorem 2.13. If C is a countably quantifier-free saturated C*-algebra of char-
acter density ℵ1 whose center is separable then C has 2ℵ1 automorphisms.

Before proceeding to prove Theorem 2.13 we note that every countably sat-
urated metric structure of character density ℵ1 has 2ℵ1 automorphisms. We
don’t know whether the Continuum Hypothesis implies that every corona of a
separable C*-algebra has 2ℵ1 automorphisms (but see [7]).

By Theorem 2.13 and Theorem 3.1 we have the following:

Corollary 2.14. Assume the Continuum Hypothesis. Assume A is a C*-
algebra such that for every separable subalgebra B of M(A) there is a B-quasi-
central approximate unit for A consisting of projections and the center of C(A)
is separable. Then C(A) has 2ℵ1 outer automorphisms. �

Recall that an automorphism Φ of a C*-algebra C is approximately inner if for
every ε > 0 and every finite set F , there is a unitary u such that ‖Φ(a)−uau∗‖ <
ε for all a ∈ F . An approximately inner *-isomorphism from a subalgebra of C
into C is defined analogously.

The conclusion of the following lemma fails for the Calkin algebra (cf. Propo-
sition 4.2).

Lemma 2.15. Assume C is a countably quantifier-free saturated C*-algebra
and B is its separable subalgebra. If Φ: B → C is an approximately inner
*-isomorphism then there is a unitary u ∈ C such that Φ(b) = ubu∗ for all
b ∈ B.

Proof. This is essentially a consequence of Lemma 2.2. Fix a countable dense
subset B0 of B. Consider the type tΦ consisting of all conditions of the form
‖xbx∗ − Φ(b)‖ = 0 for b ∈ B0 together with xx∗ = 1 and x∗x = 1. The
assumption that Φ is approximately inner is equivalent to the assertion that tΦ

is consistent. Since B0 is countable, by countable quantifier-free saturation there
exists u ∈ C(A) that realizes tΦ. Such u is a unitary which implements Φ. �
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Lemma 2.16. Assume C is a countably quantifier-free saturated, simple C*-
algebra whose center is separable. If Φ is an automorphism of C and A is a
separable subalgebra of C then there is an automorphism Φ′ of C distinct from
Φ whose restriction to A is identical to the restriction of Φ to A. Moreover, if
Φ is inner then Φ′ can be chosen to be inner.

Proof. By Lemma 2.4, we can find a non-central unitary u ∈ A′ ∩C. There-
fore Φ′ = Φ ◦Adu is as required. �

Proof of Theorem 2.13. By using Lemma 2.15 and Lemma 2.16 we can
construct a complete binary tree of height ℵ1 whose branches correspond to
distinct automorphisms. This standard construction is similar to the one given in
[21] but much easier, since in our case the limit stages are covered by Lemma 2.15,
and in [21] most of the effort was made in the limit stages. �

3. Proofs Recall that A is an essential ideal of C if no nonzero element of
C annihilates A. The strict topology on M(A) is the topology induced by the
family of seminorms ‖(x − y)a‖, where a ranges over A. If A is separable then
the strict topology on M(A) has a compatible metric, ‖(x−y)a‖, where a is any
strictly positive element of A.

We note that for any sequence of C*-algebras An, for n ∈ N, the algebra∏
nAn/

⊕
nAn is fully countably saturated. This is a straightforward analogue

of a well-known result in classical model theory (cf. [9], [4]).

3.1. Quantifier-free saturation The proof of Theorem 1.6 is a warmup for the
proof of Theorem 1.4 given in the next subsection. In Proposition 4.2 we shall
see that the conclusion of Theorem 3.1 does not follow from the assumptions of
Theorem 1.4. Let us start by recalling the statement of Theorem 1.6.

Theorem 3.1. Assume A is a σ-unital C*-algebra such that for every separable
subalgebra B of M(A) there is a B-quasicentral approximate unit for A consisting
of projections. Then its corona C(A) is countably quantifier-free saturated.

In this section and elsewhere we shall write b̄ for an n-tuple, hence

b̄ = (b1, . . . , bn)

(with n clear from the context) in order to simplify the notation. We also write

qb̄ = (qb1, . . . , qbn).

In our proof of Theorem 3.1 we shall need the following fact.

Lemma 3.2. Assume P (x1, . . . , xn) is a *-polynomial with coefficients in a C*-
algebra C. Then there is constant K < ∞, depending only on P , such that for
all a and b1, . . . , bn in C we have

‖[a, P (b̄)]‖ ≤ K max
c
‖[a, c]‖‖a‖max

j≤n
‖bj‖
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where c ranges over coefficients of P and b1, . . . , bn.
If in addition q is a projection then we have

‖qP (b̄)− qP (qb̄)q‖ ≤ K max
c
‖[q, c]‖‖a‖max

j≤n
‖bj‖.

Proof. The existence of constant K satisfying the first inequality can be
proved by a straightforward induction on the complexity of P . For the second
inequality use the first one and the fact that q = qd+1, where d is the degree of
P in order to find a large enough K. �

Proof of Theorem 3.1. Fix a countable quantifier-free type t over C(A)
and enumerate all polynomials occurring in it as Pn(x̄), for n ∈ N. By re-
enumerating and adding redundancies we may assume that all variables of Pn
are among x1, . . . , xn. Let P 0

n(x̄) be a polynomial over M(A) corresponding to
Pn(x̄). Let Kn be a constant corresponding to P 0

n as given by Lemma 3.2. Let
B be a separable subalgebra of M(A) such that all coefficients of all polynomials
P 0
n(x̄) belong to B.

Let rn for n ∈ N be such that t is the set of conditions ‖Pn(x̄)‖ = rn for
n ∈ N. For all n fix bn1 , . . . , b

n
n such that

|‖π(P 0
j (bn1 , . . . , b

n
n))‖ − rn| < 2−n

for all j ≤ n and ‖bnk‖ ≤ 2. The latter is possible by our assumption that the
condition ‖xn‖ ≤ 1 belongs to t for all k.

Let qn, for n ∈ N, be a B-quasicentral approximate unit for A consisting of
projections. By going to a subsequence we may assume the following apply for
all j ≤ n (with q0 = 0):

(1) ‖[qn, a]‖ < 2−nK−1
n when a ranges over coefficients of P 0

j and all bj1, . . . , b
j
j ,

(2) |‖(qn+1 − qn)P 0
j (bj1, . . . , b

j
j)(qn+1 − qn)‖ − rn| < 1/n,

Let

pn = qn+1 − qn

For every k the series
∑
n pnb

n
kpn is convergent with respect to the strict topology.

Let bk be equal to the sum of this series. By the second inequality of Lemma 3.2
and (1) we have that for all k ≤ n

(3) |‖pnP 0
k (b1, . . . , bk)‖ − ‖pnP 0(pnb1pn, . . . , pnbkpn)pn‖| < 2−n.

Since pnbkpn = pnb
n
kpn, we conclude that

‖Pk(π(b̄))‖ = ‖π(P 0
j (b̄))‖ = lim sup

n
‖pnP 0

j (pnb
n
1pn, . . . , pnb

n
j pn)‖ = rn.

Therefore π(bn), for n ∈ N, realizes t in C(A). �
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3.2. Degree-1 saturation We shall use [18, Corollary 6.3] which states that if
0 ≤ a ≤ 1 and ‖b‖ = 1, then ‖[a, b]‖ ≤ ε ≤ 1/4 implies ‖[a1/2, b]‖ ≤ 5ε1/2/4. We
shall also need the following lemma.

Lemma 3.3. Assume a and b are positive operators. Then ‖a + b‖ ≥
max(‖a‖, ‖b‖).

Proof. We may assume 1 = ‖a‖ ≥ ‖b‖. Fix ε > 0 and let ξ be a unit vector
such that η = ξ − aξ satisfies ‖η‖ < ε. Then Re(aξ|bξ) = Re(ξ|bξ) +Re(η|bξ) ≥
Re(η|bξ) > −ε since b ≥ 0. We therefore have

‖(a+ b)ξ‖2 = ((a+ b)ξ|(a+ b)ξ)

= ‖aξ‖2 + ‖bξ‖2 + 2Re(aξ|bξ) > 1 + ‖bξ‖2 − 2ε

and since ε > 0 was arbitrary the conclusion follows. �

Lemma 3.4. Assume M is a C*-algebra and a σ-unital C*-algebra A is an
essential ideal of M . Furthermore assume Fn, for n ∈ N, is an increasing
sequence of finite subsets of the unit ball of M and εn, for n ∈ N, is a decreasing
sequence of positive numbers converging to 0. Then A has an approximate unit
en, for n ∈ N such that with (setting e−1 = 0)

fn = (en+1 − en)1/2

for all n and all a ∈ Fn we have the following:

(4) ‖[a, fn]‖ ≤ εn,
(5) ‖fnafn‖ ≥ ‖π(a)‖ − εn (where π : M →M/A is the quotient map),
(6) ‖fmfn‖ = 0 if |m− n| ≥ 2,
(7) ‖[fn, fn+1]‖ ≤ εn.

Proof. In order to take care of the condition (6) we do the following. Let h
be a strictly positive element of A. By continuous functional calculus we choose
an approximate unit (e−1

n ) of A satisfying (6).
Let δn = (4εn/25)2. By [2, §1] inside the convex closure this approximate

unit we can find another approximate unit (e0
n) of A such that

(8) ‖e0
na− ae0

n‖ ≤ δn for all a ∈ Fn ∪ {e0
i : i < n}.

We can moreover assure that there is an increasing sequence of natural numbers
m(n), for n ∈ N, such that e0

n is in the convex closure of {e−1
k : m(n) ≤ k <

m(n+ 1)}. This will assure every subsequence (en) of (e0
n) satisfies (6).

For such a subsequence (en) and fn defined as above we will have (4) and (7)
by the choice of δn and [18, Corollary 6.3]. Since A is an essential ideal of M ,
there is a faithful representation α : M → B(H) such that α[A] is an essential
ideal of B(H) (this is essentially by [5, II.6.1.6]). In particular α(en) strongly
converges to 1H . Therefore for every a ∈ M , m ∈ N, and ε > 0 there is n large
enough so that ‖α(a(en − em))‖ ≥ ‖α(a)‖ − ε. Using this observation we can
recursively find a subsequence (en) of (e0

n) such that ‖(en+1−en)a‖ ≥ ‖π(a)‖−δn
for all a ∈ Fn. Therefore ‖fnafn‖ ≥ ‖π(a)‖−εn for all a ∈ Fn and (5) holds. �
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Fix a σ-unital C*-algebra A; let M = M(A), and εn = 2−n. Now by applying
Lemma 3.4 we get A,M,Fn, (en) and (fn), for n ∈ N. We shall show that in
this situation these objects have the additional properties in formulas (9)–(16)
below.

(9) The series
∑
n f

2
n strictly converges to 1.

Since A is σ-unital, we can pick a strictly positive a ∈ A. Therefore the strict
topology is given by compatible metric d(b, c) = ‖a(b− c)‖. Fix ε > 0. Let n be
large enough so that ‖aen+1 − a‖ < ε. Since 1− en+1 =

∑∞
j=n+1 f

2
j , (9) follows.

(10) For every sequence (bj) in the unit ball of M the series
∑
j fjbjfj is strictly

convergent.

We first note that 0 ≤ c ≤ d implies ‖cb‖ ≤ ‖db‖ for all b. This is because
‖cb‖2 = ‖b∗c2b‖ ≤ ‖b∗d2b‖ = ‖db‖2.

Since every element b of a C*-algebra is a linear combination of four positive
elements b = c0 − c1 + ic2 − ic3, we may assume bj ≥ 0 for all j. Fix ε > 0 and
find n large enough so that (with a ∈ A strictly positive) ‖

∑∞
j=n(f2

j )a‖ < ε.

Then 0 ≤
∑
j≥n fjbjfj ≤

∑
j≥n f

2
j . Therefore by the above inequality applied

with c =
∑
j≥n fjbjfj and d =

∑
j≥n f

2
j we have ‖ca‖ ≤ ‖da‖ ≤ ε.

(11) ‖
∑
j fjxjfj‖ ≤ supj ‖fjxjfj‖ for every norm-bounded sequence (xj).

(12) If in addition supj ‖fjxjfj‖ = supj ‖xj‖ then we moreover have the equality
in (11).

In order to prove (11) consider the C*-algebra N =
∏

NM . Each map

N 3 (xk)k∈N 7→ fjxjfj ∈M

for j ∈ N is completely positive on N , and therefore for each n ∈ N the map
(xk)k∈N 7→

∑
j≤n fjxjfj is completely positive as well. The supremum of these

maps is also a completely positive map. By the assumption that
∑
j f

2
j = 1 this

map is also unital, and therefore of norm 1. The inequality (11) follows.
In order to prove (12) let α = supj ‖xj‖. We may assume α = 1. Fix ε > 0,

unit vector ξ, and n such that ‖(fnxnfn)ξ‖ > 1 − ε. Then ‖fnξ‖ ≥ 1 − ε and
therefore |(f2

nξ|ξ)| = ‖fnξ‖ ≥ 1 − ε and this implies that ‖ξ − f2
nξ‖ ≤ ε. Since∑

j f
2
j = 1, this shows that ‖

∑
j(fjxjfj)ξ‖ ≈ ‖(fnxnfn)ξ‖ and the conclusion

follows.
Recall that π : M(A)→ C(A) is the quotient map. In the following the norm

on the left-hand side of the equality is computed in the corona and the norm on
the right-hand side is computed in the multiplier algebra.

(13) ‖π(
∑
j fjxjfj)‖ = lim supj ‖fjxjfj‖ for every bounded sequence (xj) such

that supj ‖fjxjfj‖ = supj ‖xj‖.

Since
∑∞
j=0 fjxjfj−

∑∞
j=m fjxjfj is in A for all m ∈ N, the inequality ≤ follows

from (11) and ‖π(a)‖ ≤ ‖a‖. Similarly, ≥ follows from (12).
The converse inequality follows by Lemma 3.3.
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(14) X(fn) = {a ∈ M :
∑
n ‖[a, fn]‖ < ∞} is a subalgebra of M including

C∗(
⋃
n Fn).

Since b ∈ Fj implies ‖[b, fn]‖ ≤ 2−n for all n ≥ j, we have
⋃
j Fj ⊆ X(fn).

For a and b in M we have [a + b, fn] = [a, fn] + [b, fn], ‖[a∗, fn]‖ = ‖[a, fn]‖
and ‖[ab, fn]‖ ≤ ‖a‖ · ‖[b, fn]‖+ ‖b‖ · ‖[a, fn]‖. Therefore X(fn) is a *-subalgebra
of M .
X(fn) is not necessarily norm-closed but this will be of no consequence.

(15) The map Λ = Λ(fn) from M into M defined by

Λ(a) =
∑
n fnafn

is completely positive and it satisfies b− Λ(b) ∈ A for all b ∈ X(fn).

Note that ‖Λ(b)‖ ≤ ‖b‖ by (11), and the map is clearly completely positive. Fix
b ∈ X(fn) and ε > 0. Since b ∈ X(fn) the series δj = ‖fjb − bfj‖ is convergent,
and we can pick n large enough to have

∑
j≥n ‖fjb− bfj‖ ≤ e. We write c ∼A d

for c− d ∈ A and c ∼ε d for ‖c− d‖ ≤ ε (clearly the latter is not an equivalence
relation). We have

∑
j≤n fjbfj ∈ A. Also, with δ =

∑
j≥n δj we have

(1− en)b =
∑∞
j=n f

2
j b ∼δ

∑∞
j=n fjbfj

and the conclusion follows.

(16) If supj ‖xj‖ <∞ and δj = supi≥j ‖[xj , fi]‖ are such that
∑
j δj <∞, then

x =
∑
j fjxjfj belongs to X(fn).

We have fn(
∑
j fjxjfj) = fn(

∑n+1
j=n−1 fjxjfj). Since ‖[fk, fk+1]‖ ≤ εk we have

‖[x, fn]‖ ≤
∑n+1
j=n−1 ‖[fjxjfj , fn]‖ ≤ 4 supj ‖xj‖εn−1 + δn−1 + δn + δn+1

and the conclusion follows.

Proof of Theorem 1.4. Fix a σ-unital algebra A and let π : M(A)→ C(A)
be the quotient map.

Fix degree-1 *-polynomials Pn(x̄) with coefficients in C(A) and compact sub-
sets Kn ⊆ R such that for every n the system

(17) ‖Pj(x̄)‖ ∈ (Kj)1/n for all j ≤ n

has a solution in C(A). Without a loss of generality all the inequalities of the form
‖xn‖ ≤ 1, for n ∈ N, are in the system. By compactness, we can assume each Kn

is a singleton {rn}. Therefore we may assume (17) consists of conditions of the
form |‖Pn(x̄)‖−rn| ≤ 1/m, for all m and n. By re-enumerating Pn’s and adding
redundancies, we may also assume that only the variables xj , for j ≤ n, occur
in Pn for every n. For each m fix an approximate solution ẋj(m) = π(xj(m)),
for j ≤ m, as in (17). Therefore
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(18) |‖Pk(π(x̄(m)))‖ − rk| ≤ 1/m for all k ≤ m.

We choose all xk(m) to have norm ≤ 1.

Let P 0
n(x̄) be a polynomial with coefficients in M(A) that lift to the corre-

sponding coefficients of Pn(x̄). Let Fn be a finite subset of M(A) such that
π(Fn) includes the following:

(i) all coefficients of every P 0
j for j ≤ n,

(ii) {xk(m) : k ≤ m} satisfying (18) for all m ≤ n, and

(iii) {P 0
j (x0(j), . . . , xj(j)) : j ≤ n}.

With εn = 2−n let (en) and (fn) be as guaranteed by Lemma 3.4. Since ‖xj(i)‖ ≤
1, by (10) we have that

yi =
∑
j fjxi(j)fj

belongs to M(A) for all i, and (16) implies yi ∈ X(fn) for all i.

We shall prove ‖Pn(π(ȳ))‖ = rn for all n.

By (11) we have ‖yi‖ ≤ 2. Fix n and a monomial axkb of P 0
n(x̄). Then for all

j ≥ n we have

‖afjxk(j)fjb− fjaxk(j)bfj‖ ≤ εj .(|a|+ |b|)

and therefore the sum of these differences is a convergent series in A and we have

(19) a(
∑
j fjxk(j)fj)b ∼A

∑
j(fjaxk(j)bfj).

Since the polynomial P 0
n(x̄) has degree 1, all of its nonconstant monomials are

either of the form axkb or of the form ax∗kb for some k, a and b, and by (19)
(writing

∑
j fj ȳfj for the n+ 1-tuple (

∑
j fjy0fj , . . . ,

∑
j fjynfj))

P 0
n(
∑
j fjykfj) ∼A

∑
j fjP

0
n(ȳ)fj .

By (15) we have
∑
j fjyifj ∼A

∑
j fjyifj for all i and therefore

P 0
n(ȳ) ∼A P 0

n(
∑
j fj ȳfj) ∼A

∑
j fjP

0
n(ȳ)fj .

Using this, by (13) we have that

‖Pn(π(ȳ))‖ = ‖π(P 0
n(ȳ))‖ = lim sup

j
‖fjP 0

n(ȳ)fj‖ = rn.

Therefore π(ȳ) is a solution to the system. Since the inequality ‖xk‖ ≤ 1 was
in the system for all k we also have ‖yk‖ ≤ 1 for all k and this concludes the
proof. �
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4. Limiting examples In this section we prove that the Calkin algebra is
not countably saturated (cf. [9]). More precisely, in Proposition 4.1 we construct
a consistent type consisting of universal formulas that is not realized in the Calkin
algebra. In Proposition 4.2 we go a step further and present a proof, due to N.
Christopher Phillips, that some consistent quantifier-free type is not realized in
the Calkin algebra.

For a unitary u in a C*-algebra A let

ξ(u) = {j ∈ N | u has a j-th root}.

By Atkinson’s theorem, every invertible operator in the Calkin algebra is the
image of a Fredholm operator in B(H) and therefore ξ(u) is either N or {j | j
divides m} for some m ∈ N, depending on whether the Fredholm index of u is 0
or ±m.

Recall that a supernatural number is a formal expression of the form
∏
i p
ki
i ,

where {pi} is the enumeration of primes and each ki is a natural number (possibly
zero) or ∞. The divisibility relation on supernatural numbers is defined in the
natural way.

Proposition 4.1. For any supernatural number n the type t(n) consisting of
following conditions is approximately finitely satisfiable, but not realizable, in the
Calkin algebra.

(1) x0x
∗
0 = 1, x∗0x0 = 1,

(2) xkk = x0, whenever k is a natural number that divides n,
(3) inf‖y‖=1 ‖yk − x0‖ ≥ 1, whenever k is a natural number that does not di-

vide n.

In particular, the Calkin algebra is not countably saturated.

Proof. We have n =
∏
j p

kj
j , where (pj) is the increasing enumeration of

primes and kj ∈ N ∪ {∞}.
Let s denote the unilateral shift on the underlying Hilbert space H and let ṡ

be its image in the Calkin algebra. For l ∈ N let nl =
∏l
j=1 p

min(kj ,l)
j . We claim

that
ξ(ṡnl) = {m ∈ N | m divides n}.

The inclusion is trivial. In order to prove the converse inclusion fix k ∈ N that
does not divide nl. Assume for a moment that ṡnl has a k-th root v̇ in C(H)U .
Let u and w be elements of B(H) mapped to ṡnl and v̇k by the quotient map.
Then they are Fredholm operators with different Fredholm indices and ‖π(u)‖ =
‖π(w)‖ = 1. Essentially by [19, 3.3.18 and 3.3.20] we have ‖π(u− w)‖ ≥ 1, and
therefore v = π(w) is not k-th root of ṡnl . �

Proposition 4.2 below was communicated to us by N. Christopher Phillips
in [20]. We would like to thank Chris for his kind permission to include this
result here. While the proof in [20] relied entirely on known results about Pext
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and a topology on Ext (more precisely, [22, §3], [2, §2], [23, [Theorem 3.3], and
[24, Proposition 9.3 (1)]), for convenience of the reader we shall present a self-
contained proof of this result.

Proposition 4.2. There is a countable degree-1 type over the Calkin algebra
that is approximately finitely realizable by unitaries but not realizable by a uni-
tary. In particular, the Calkin algebra is not countably quantifier-free saturated.

Proof. We include more details than a C*-algebraist may want to see. Recall
that for a C*-algebra A the abelian semigroup Ext(A) is defined as follows:
On the set of *-homomorphisms π : A → C(H) consider the conjugacy relation
by unitaries in C(H). On the set of conjugacy classes define addition by letting
π1⊕π2 be the direct sum, where C(H) is identified with C(H⊕H). The only fact
about Ext that we shall need is that there exists a simple separable C*-algebra
A such that A is a direct limit of algebras whose Ext is trivial, but Ext(A) is
not trivial. For example, the CAR algebra has this property and we shall sketch
a proof of this well-known fact below.

Now fix A as above and let π1 : A→ C(H) and π2 : A→ C(H) be inequivalent
*-homomorphisms. SinceA is simple both π1 and π2 are injective and F (π1(a)) =
π2(a) defines a map F from π1[A] to π2[A]. This map is not implemented by
a unitary, but if A = limnAn so that Ext(An) is trivial for every n, then the
restriction of F to π1[An] is implemented by a unitary. Fix a countable dense
subset D of π1[A]. Then the countable degree-1 type t consisting of all conditions
of the form xa = F (a)x, for x ∈ D, is approximately finitely realizable by a
unitary, but not realizable by a unitary.

We now sketch a proof that Ext of the CAR algebra A =
⊗

nM2(C) is
nontrivial. Write A as a direct limit of M2n(C) for n ∈ N. While Ext(M2n(C))
is trivial, the so-called strong Ext of M2n(C) is not. Two *-homomorphisms
of M2n(C) into C(H) are strongly equivalent if they are conjugate by u̇, for a
unitary u ∈ B(H). Every unital *-homomorphism Φ of M2n(C) into C(H) is
lifted by a *-homomorphism Φ0 into B(H) and the strong equivalence class of Φ
is uniquely determined by the codimension of Φ0(1) modulo 2n. Any unitary u in
C(H) that witnesses such Φ is conjugate to the trivial representation of M2n(C)
which necessarily has Fredholm index equal to the codimension of Φ0(1) modulo
2n. Now write M2∞ as

⊗
NAn where An ∼= M2(C) for all n. Recursively find

*-homomorphisms πn1 and πn2 from
⊗

j≤nAj into the Calkin algebra so that (i)

πn+1
j extends πnj for all n and j = 1, 2, (ii) each πn1 has trivial strong Ext class,

and (iii) each πn2 has strong Ext class 2n−1 (modulo 2n). The construction is
straightforward. The limits π1 and π2 are *-homomorphisms of the CAR algebra
into the Calkin algebra such that the first one lifts to a homomorphism of the
CAR algebra into B(H) and the other one does not. �

5. Concluding remarks Both obstructions to the countable saturation of
the Calkin algebra described in §4 have a K-theoretic nature.
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Question 5.1. Do all obstructions to countable saturation, or at least to count-
able quantifier-free saturation, of corona algebras have a K-theoretic nature?

A test question for Question 5.1 was suggested by Itäi Ben Ya’acov. Consider
the unitary group U(C(H)) of the Calkin algebra with respect to the gauge
given by the Fredholm index (see [3]). Is this structure quantifier-free countably
saturated? Here is an even less ambitious test question:

Question 5.2. Let U0 be the subgroup of the unitary group of the Calkin algebra
consisting of unitaries of Fredholm index zero. Is this structure quantifier-free
countably saturated in the logic of metric structures?

A discrete total ordering L is countably saturated (in the classical model-
theoretic sense, see e.g., [6]) if and only if whenever X and Y are countable
subsets of L such that x < y for all x ∈ X and all y ∈ Y and either X has no
maximal element or Y has no minimal element there is z ∈ L such that x < z
and z < y for all x ∈ X and all y ∈ Y . The fact that this definition does not
involve formulas of arbitrary complexity is a consequence of the classical result
that theory of dense linear orderings allows elimination of quantifiers.

Hadwin proved ([12]) that every maximal chain of projections in the Calkin
algebra, when considered as a discrete linear ordering, is countably saturated.
It should be noted that not every maximal commuting family of projections in
the Calkin algebra is countably saturated. For example, the family of projec-
tions of an atomless masa is isomorphic to the Lebesgue measure algebra. The
latter is a complete Boolean algebra and therefore not countably saturated. It
is not difficult to see that in every quantifier-free countably saturated algebra
every maximal chain of projections is countably saturated. However, the Calkin
algebra is not countably quantifier-free saturated(Proposition 4.2) and we don’t
know whether countable degree-1 saturation suffices for Hadwin’s result. An
affirmative answer to Question 5.3 below would suffice for this.

We also don’t know whether in a countably degree-1 saturated C*-algebra
every countable type that is approximately finitely satisfiable by projections is
realized by a projection (cf. Lemma 2.1 and Lemma 2.2). An affirmative answer
would imply an affirmative answer to the following: (see Definition 2.5).

Question 5.3. Assume C is a countably degree-1 saturated C*-algebra. If A
and B are separable orthogonal subalgebras of C, are they necessarily separated
by a projection?

A positive answer to the following would provide a more satisfying proof of
Corollary 1.5.

Question 5.4. Assume1 C is countably degree-1 saturated. Is Mn(C) countably
degree-1 saturated for all n?

1Added in Proof, March 2013. Martino Lupini has proved that the answer to Question 5.5
is positive, and that the norm in Mn(A) is definable by a universal formula. Therefore both
both Question 5.4 and Question 5.5 have a positive answer.
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The statement of [18, Proposition 9.1] distinguishes between C, M2(C) and
M4(C) being SAW*-algebras and therefore suggests that the analogous assertion
for SAW*-algebras is false, or at least not obviously true. A closely related
problem to Question 5.4 is the following (the relevant definition of ‘definable’ is
as in [4] or [9]):

Question 5.5. If2 A is a C*-algebra and n ≥ 2, is the unit ball of Mn(A),

when identified with a subset of (A≤1)n
2

, definable over A? If so, what is the
logical complexity of the definition?

A positive answer to Question 5.5 would imply that if C is countably saturated
then so is Mn(C). By [18, Proposition 9.1], this would imply, for example, that
countably degree-1 saturated C*-algebras allow weak polar decomposition.

Following [7] we say that an automorphism Φ of M(A)/A is trivial if the set
{(a, b) ∈ M(A)2 : Φ(a/A) = b/A} is strictly Borel. Every inner automorphism
is clearly of this form. Also in the case when A is separable M(A) is separable
metric in the strict topology and therefore M(A)/A has at most 2ℵ0 trivial
automorphisms.

Problem 5.6. Prove that the Continuum Hypothesis implies that every corona
of an infinite-dimensional, non-unital, separable C*-algebra has nontrivial auto-
morphisms.

A positive answer to this problem for a large class of C*-algebras, including
all stable C*-algebras of real rank zero, is given in [7]. Methods of the present
paper of [7] do not apply to the algebra C([0, 1)). However, Problem 5.6 is known
to have an affirmative solution by a result of J. C. Yu (see [13, §9]). We don’t
know the degree of saturation of the corona of C([0, 1)). An even more interesting
problem is to prove that an appropriate forcing axiom implies all automorphisms
of all coronas of separable C*-algebras are trivial (this is necessarily weaker than
‘inner,’ see the last section of [8]).

A C*-algebra C is countably homogeneous (as a metric structure) if for every
two sequences 〈an : n ∈ N〉 and 〈bn : n ∈ N〉 in C that have the same type in C
(see [9]) there exists an automorphism Φ of C such that Φ(an) = bn for all n.
Fully countably saturated C*-algebras of character density ℵ1 are are countably
homogeneous. Therefore for example the Continuum Hypothes implies that
ultrapowers of separable C*-algebras associated with nonprincipal ultrafilters on
N are countably homogeneous.

Question 5.7. Are corona algebras of σ-unital C*-algebras countably homoge-
neous?

A positive answer in the case of the Calkin algebra C(H) would imply that the
unitaleral shift and its adjoint have the same type if and only if it is relatively
consistent with ZFC that C(H) has a K-theory reversing automorphism.

2See footnote to Question 5.4



Countable Saturation of Corona Algebras 55

References

1. C. A. Akemann and G. K. Pedersen, Central sequences and inner derivations of
separable C∗-algebras, Amer. J. Math. 101 (1979), 1047–1061.

2. W. Arveson, Notes on extensions of C*-algebras, Duke Math. J. 44 (1977), 329–355.
3. I. Ben Yaacov, Continuous first order logic for unbounded metric structures, Journal

of Mathematical Logic 8 (2008), 197–223.
4. I. Ben Yaacov, A. Berenstein, C.W. Henson, and A. Usvyatsov, Model theory for

metric structures, Model Theory with Applications to Algebra and Analysis, Vol. II
(Z. Chatzidakis et al., eds.), London Math. Soc. Lecture Notes Series, no. 350,
Cambridge University Press, 2008, pp. 315–427.

5. B. Blackadar, Operator algebras, Encyclopaedia of Mathematical Sciences, vol. 122,
Springer-Verlag, Berlin, 2006, Theory of C∗-algebras and von Neumann algebras,
Operator Algebras and Non-commutative Geometry, III.

6. C. C. Chang and H. J. Keisler, Model theory, third ed., Studies in Logic and the
Foundations of Mathematics, vol. 73, North-Holland Publishing Co., Amsterdam,
1990.

7. S. Coskey and I. Farah, Automorphisms of corona algebras and group cohomology,
Trans. Amer. Math. Soc. (to appear).

8. I. Farah, All automorphisms of the Calkin algebra are inner, Annals of Mathematics
173 (2011), 619–661.

9. I. Farah, B. Hart, and D. Sherman, Model theory of operator algebras II: Model
theory, Israel J. Math. (to appear).

10. , Model theory of operator algebras I: Stability, Bull. London Math. Soc. (to
appear).

11. S. Ghasemi, SAW* algebras and tensor products, preprint, arXiv:1209.3459, (2012).
12. D. Hadwin, Maximal nests in the Calkin algebra, Proc. Amer. Math. Soc. 126 (1998),

1109–1113.
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