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Abstract. We consider the question of whether P(ω) is a subalgebra when-

ever it is a quotient of a Boolean algebra by a countably generated ideal. This

question was raised privately by Murray Bell. We obtain two partial answers
under the open coloring axiom. Topologically our first result is that if a zero-

dimensional compact space has a zero-set mapping onto βN , then it has a
regular closed zero-set mapping onto βN . The second result is that if the

compact space has density at most ω1, then it will map onto βN if it contains

a zero-set that maps onto βN .

1. Introduction

As mentioned in the abstract, Murray Bell raised the following question: if a
compact zero-dimensional space has a zero-set which maps onto βN , must the
space map onto βN? It was proved in [Dow97] that a negative answer follows from
the Continuum Hypothesis (see also [vM01] for a simpler proof of a stronger result).
In this paper, we obtain partial positive answers under the Open Coloring Axiom.

The question can be cast in Boolean algebraic language as follows. If I is a
countably generated ideal of a Boolean algebra B, and if B/I contains P(ω), must
B itself contain P(ω)? The following definition will be useful in formulating our
partial result and was introduced in [Dow97].

Definition 1.1. Let B be a Boolean algebra. Say that a family A ⊂ B is separated
from a family C if there is a b ∈ B such that a ≤ b for all a ∈ A and b ∧ c = 0 for
all c ∈ C. We will say that a family A is completely separated if for each C ⊂ A,
A \ C is separated from C.

We will prove that if OCA holds, then a Boolean algebra B will have an infinite
completely separated family if it has a countably generated ideal I such that B/I
contains P(ω). The examples constructed in [Dow97, vM01] show that this is not
true if CH is assumed. Another question suggests itself here: does it suffice to just
assume that B/I has an infinite completely separated family? In the third section
we prove that OCA provides a positive answer to Bell’s question if the space we
start with has a dense subset of cardinality at most ω1.
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2. Extending to Regular Closed under OCA

Recall that OCA is the Open Coloring Axiom as formulated in [Tod89]. By
[X]2 we denote the reduced square of X, which is the set of all unordered pairs of
elements of X. To every Y ⊆ [X]2 naturally corresponds a symmetric subset of X2

disjoint from the diagonal. If X is a topological space then on the reduced square
we consider the topology consisting of all sets that correspond to open subsets (in
the product topology) of X2. The statement OCA says:

if X is separable and metrizable and if [X]2 = K0∪K1, where K0 is
open, then either X has an uncountable K0-homogeneous subset Y
or X is the union of countably many K1-homogeneous subsets.

In Theorem 3.6 we will show that if B is a subalgebra of P(ω1) and I is a countably
generated ideal on B such that B/I contains P(ω), then B contains P(ω) in a very
strong sense. Our next result applies to Boolean algebras which are not necessarily
subalgebras of P(ω1).

Theorem 2.1 (OCA). If B is a Boolean algebra and I ⊂ B is a countably generated
ideal such that P(ω) embeds into the quotient algebra B/I, then B has an infinite
completely separated family.

Proof. Since I is countably generated, we may choose an increasing sequence {cn :
n ∈ ω} of members of I which generates I. Since P(ω) embeds into B/I, there is
an embedding of P(2<ω) into B/I as well. For each a ⊂ 2<ω, let ã be a member
of B, so that a 7→ ã/I is an embedding of P(2<ω) into B/I. Enumerate 2<ω as sn

(n ∈ ω). By recursively replacing {̃sn} with {̃sn} \
∨

i<n {̃si}, we may assume that
for s, t ∈ 2<ω

{̃s} ∧ {̃t} 6= 0B if and only if s = t.

Assume for a moment there are infinitely many s for which there is ns satisfying
{̃s} ∧ (cm \ cns

) = 0B for all m ≥ ns. Then for b ≤ {̃s} \ cns
we have b ∈ I if

and only if b = 0B . And therefore {̃s} \ cns form an infinite completely separated
family, as witnessed by ã (a ⊆ 2<ω).

We can therefore assume that for each s and every n there is m ≥ n such that
{̃s} ∧ (cm \ cn) is nonzero. Find an increasing sequence {ni : i ∈ ω} ⊂ ω such that
for every s and all i ≥ |s| the element

x(s, i) = {̃s} ∧ (cni+1 \ cni
)

is nonzero. By replacing ci with cni
we may assume for simplicity that ni = i for

all i, and therefore
x(s, n) = {̃s} ∧ (cn+|s|+1 \ cn+|s|).

Then we have
(1) x(s, n) ∧ x(t, m) 6= 0B if and only if (s, n) = (t, m).
(2) x(s, n) ∧ cm = 0B if m ≤ |s|.

For each f ∈ 2ω, let
af = {f � n : n ∈ ω}.

Note that for each s = f � n, there is an m so that x(s, k) ≤ ãf for all k ≥ m. In
addition, for each b ⊂ af and each s ∈ af , there is an m so that

(3) if s ∈ b then x(s, k) ≤ b̃ for all k ≥ m
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(4) if s /∈ b then x(s, k) ∧ b̃ = 0B for all k ≥ m.

Now we will try to show that there is an f ∈ 2ω, an infinite a ⊂ af , and an h ∈ ωω

such that {x(s, h(n)) : n ∈ a, and s = f � n} is completely separated. In actual
fact, it could be proved that

{{̃s} \ ch(n) : n ∈ a and s = f � n}

is completely separated, but this fact will not be used.
We will use Velickovic’s OCA approach (as in [Vel93]). Let X denote the family

of all pairs (a, b) of infinite sets b ⊂ a ⊂ 2<ω such that there is an f with a ⊂ af .
Clearly then f is unique and we will use the notation fa and fb to denote it. We
will put a pair {(a, b), (c, d)} ⊂ X into a set K0 just in case the following three
conditions hold:

(1) fa 6= fc;
(2) b ∩ c = d ∩ a;
(3) there is a pair (s, n) such that

(a) x(s, n) ≤ ã ∧ c̃

(b) exactly one of b̃ ∧ x(s, n) and d̃ ∧ x(s, n) is 0B .

Claim 1. There is no uncountable Y ⊆ X such that [Y]2 ⊆ K0.

Proof of Claim. Suppose that Y ⊆ X is uncountable and K0-homogeneous. Set

Y =
⋃
{b : (∃a) (a, b) ∈ Y}.

From the fact that Y is K0-homogeneous it follows that for each (a, b) ∈ Y we have
Y ∩ a = b. Let us consider the element Ỹ of B. For each (a, b) ∈ Y, there is an
n(a,b) such that (Ỹ ∩ ã)∆b̃ is contained in cn(a,b) . Fix any n so that n = n(a,b)

for an uncountable subset Y ′ of Y. There are only finitely many (s,m) such that
x(s,m) ∧ cn is not zero. We may assume that for each such (s,m), either b̃ meets
x(s,m) for each (a, b) ∈ Y ′ or b̃ is disjoint from x(s,m) for each (a, b) ∈ Y ′.
Now select distinct (a, b) and (c, d) from Y ′. Since {(a, b), (c, d)} ∈ K0, there is a
pair (s,m) such that x(s,m) ≤ ã ∧ c̃ and exactly one of b̃ and d̃ meets x(s,m).
By our second reduction of Y ′ it follows that x(s,m) is disjoint from cn. Since
(Ỹ ∧ ã)\cn = b̃\cn, we have Ỹ ∧x(s,m) = b̃∧x(s,m), and since (Ỹ ∧ c̃)\cn = d̃\cn,
we have Ỹ ∧ x(s,m) = d̃ ∧ x(s,m), a contradiction. �

Consider the following topology on X. An open set [ϕ] is obtained by specifying
a function, ϕ, from a finite set F ⊂ 2 × 2<ω × ω into 2. Given such a ϕ with
domain F , a pair (a, b) is a member of [ϕ] if the following hold:

(i) for each (0, s, 0) ∈ F , s ∈ a if and only if ϕ(0, s, 0) = 1,
(ii) for each (1, s, 0) ∈ F , s ∈ b if and only if ϕ(1, s, 0) = 1,
(iii) for each (0, s, n) ∈ F , with n ≥ 1, x(s, n) ≤ ã if and only if ϕ(0, s, n) = 1.
(iv) for each (1, s, n) ∈ F , with n ≥ 1, 0 6= b̃∧x(s, n) if and only if ϕ(1, s, n) = 1 .

This results in a separable metric topology on X and we may note that K0 is an
open subset of the square.

Claim 2. If there are Yn (n ∈ ω) such that X =
⋃

n Yn and [Yn]2 ∩K0 = ∅ for all
n, then there is an infinite completely separated subset of B.
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Proof of Claim. Assume the contrary, that B contains no infinite completely sep-
arated sequence. For each k, let Yk be a countable dense subset of Yk with re-
spect to the above mentioned topology. Fix any g ∈ 2ω such that g 6= fa for all
(a, b) ∈

⋃
k Yk. For each n ∈ ω, let sn = g � n.

Recursively construct an increasing sequence 〈ni : i ∈ ω〉. Let n0 = 0 and
suppose that 〈ni : i ≤ k〉 has been defined. For each i ≤ k and each b′ ⊂ a′ ⊂
{sj : j < nk}, fix, if possible, a pair (a, b) ∈ Yi such that a′ = a ∩ {sj : j < nk}
and b′ = b ∩ {sj : j < nk}. Thus, we have chosen some finite set of pairs from⋃
{Yi : i ≤ k}. Fix nk+1 large enough so that g � nk+1 6= fa � nk+1 for each a from

one of these finitely many pairs.
Set A =

⋃
{[nk, nk+1) : k is even} and a = {sj : j ∈ A}. Fix any function

h0 ∈ ωω such that for each n ∈ A and each m > h0(n) we have x(sn,m) ≤ ã.
For each h ≥ h0, fix an infinite Jh ⊂ A such that Ah = {x(sn, h(n)) : n ∈ Jh}

is not separated from Ch = {x(sn, h(n)) : n ∈ A \ Jh}. Now temporarily set
bh = {sn : n ∈ Jh} and consider b̃h. It follows that at least one of b̃h and ã \ b̃h

meets an infinite subset of each of Ah and Ch. If it is the former, then leave bh as
it is, if the latter, then reassign bh to a \ bh. In either case, it follows that the set

zh = {s ∈ a \ bh : b̃h ∧ x(s, h(|s|)) 6= 0B}
is infinite.

For each h, there is an i such that (a, bh) is a member of Yi. Therefore there is
an i, such that the family of strictly increasing h for which (a, bh) ∈ Yi is dominating
mod finite in ωω.

Claim 3. There is an m such that for each `, there is an h such that (a, bh) ∈ Yi,
h(m) ≥ `, and such that sm ∈ zh.

Proof of Claim. Otherwise, we can define, for each m, f(m) so that for h with
(a, bh) ∈ Yi, either sm /∈ zh or h(m) < f(m). Having defined such an f , choose h
with (a, bh) ∈ Yi so that there is an m′ such that f(m) < h(m) for all m ≥ m′.
Since zh is infinite, there is an m ≥ m′ such that sm ∈ zh. Obviously this contradicts
the choice of f . �

Fix any m as in the Claim. Choose a family {h` : ` ∈ ω} such that, for each `,
sm ∈ zh`

, h`(m) ≥ `, and (a, bh`
) ∈ Yi. (We shall write b` for bh`

from now on.) By
passing to a subsequence and re-enumerating, we can assume that bk ∩ {sj : j ≤
`} = b` ∩ {sj : j ≤ `} for each k ≥ ` .

Fix the minimal odd k such that m < nk. By the density of Yi and the choice of
the nks, there is a pair (c, d) ∈ Yi such that c ∩ {sj : j < nk} = a ∩ {sj : j < nk},
d ∩ {sj : j < nk} = bnk

∩ {sj : j < nk} and fc � nk+1 6= g � nk+1. Of course, since
k is odd, A ∩ [nk, nk+1) is empty and, since c ⊂ afc

, c ∩ {sj : nk+1 ≤ j} is empty.
Therefore,

(*) a ∩ d = c ∩ b` for all ` ≥ nk.
Finally, note that sm ∈ c \ d since sm ∈ zhnk

⊂ a \ bnk
. Therefore, there is an `

such that
(**) x(sm, j) ≤ c̃ \ d̃ and x(sm, j) ≤ ã for all j ≥ `.

So we have x(sm, h`(m)) ∧ b̃` 6= 0B and x(sm, h`(m)) ∧ d̃ = 0B . By this, (*), (**)
and fa 6= fc, we have {(a, b`), (c, d)} ∈ K0, a contradiction. �

This completes the proof. �



IS P(ω) A SUBALGEBRA? 5

3. Completely additive almost liftings

If h : Y → X is any partial function, then define Φh : P(X) → P(Y ) by

Φh(A) = h−1(A).

A mapping F : P(X) → P(Y ) is completely additive if there is an h : Y → X such
that F = Φh.

If θ is a cardinal then an ideal J on ω is θ-cc over fin if every family of J -positive
subsets of ω that are pairwise almost disjoint modulo finite has size less than θ. If
θ = ℵ1 then we say that J is ccc over fin (see [Far00, §3.3]).

If X is a set, J is an ideal on ω, I is an ideal on X, and Φ: P(ω)/J → P(X)/I
is a Boolean algebra homomorphism, then a map Φ∗ : P(ω) → P(X) is a lifting
of Φ if the diagram

P(ω)
Φ∗ //

πJ

��

P(X)

πI

��
P(ω)/J

Φ
// P(X)/I

commutes. In other words, if the formula [Φ∗(A)]I = Φ([A]J ) is true for all A ∈
P(ω). In the case that Φ : P(ω) → P(X)/I is a homomorphism, then a lifting
of Φ is a function Φ∗ : P(ω) → P(X) such that [Φ∗(A)]I = Φ(A) is true for all
A ∈ P(ω). Since we are not requiring the lifting to have any algebraic properties,
the Axiom of Choice implies that every homomorphism has a lifting. The symbol
Φ∗ will always stand for a lifting of Φ. A map F : P(ω) → P(X) is an almost lifting
if the family

{A : [F (A)]I = Φ([A]J )}
includes an ideal that is ccc over fin. Again, in the case that that there is no J
involved, F is an almost lifting if the family {A : [F (A)]I = Φ(A)} includes an
ideal that is ccc over fin.

If Φ: P(ω) → P(X)/I is a homomorphism and B ⊆ X then let

ΦB : P(ω) → P(B)/I
be the homomorphism whose lifting is C 7→ Φ∗(C) ∩B, which we denote as ΦB

∗ .

Lemma 3.1. Assume I is an analytic ideal and Φ: P(ω)/ fin → P(ω)/I is a
homomorphism. The following are equivalent

(1) Φ has a continuous almost lifting.
(2) There is B ⊆ ω such that ΦB has a continuous lifting and ker(Φω\B) is ccc

over fin.

Proof. This is [Far00, Lemma 3.3.4], using the fact that a homomorphism has a
Baire-measurable lifting if and only if it has a continuous lifting, see [Far00, Lemma
1.3.2]. �

Theorem 3.2. Assume OCA and MA and let I be a countably generated ideal
on ω. Then every homomorphism Φ: P(ω)/ fin → P(ω)/I has a completely additive
almost lifting.

Proof. By [Far00, Theorem 3.3.6], Φ has a continuous almost lifting. By the second
part of the same result, there is A ⊆ ω such that ΦA has a continuous lifting and
ker(Φω\A) is ccc over fin. Since the restriction of I to A is countably generated,
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it is Rudin–Keisler isomorphic (see [Far00]) to either fin or fin×∅. By [Far00,
Theorem 1.6.1 and Theorem 1.6.2], ΦA has a completely additive lifting Φh, and
this is a completely additive almost lifting for Φ. �

We will need the following improvement of Theorem 3.2 (or rather its conse-
quence, Corollary 3.4) that does not require ker(Φ) ⊇ fin. The proof of Theorem 3.2
can be modified to a proof of Corollary 3.4 by making only minor changes. For the
convenience of the reader, we will give another proof, using only those results that
were both stated and proved in [Far00], instead of their proofs.

Theorem 3.3. Assume that for every countably generated ideal I on ω every ho-
momorphism from P(ω)/ fin into P(ω)/I has a completely additive almost lifting.
Then for every countably generated ideal I on ω every homomorphism of P(ω) into
P(ω)/I has a completely additive almost lifting.

Proof. Let Φ: P(ω) → P(ω)/I be a homomorphism, and let Φ∗ be its lifting. For
n ∈ ω let

An = Φ∗({n}).
We first show that we may assume that no An is in I and that fin ⊂ I. Let

S0 = {n : {n} ∈ ker(Φ)} and S1 = ω \ S0.
We can define Φ0 : P(S0) → P(Φ∗(S0))/I and Φ1 : P(S1) → P(Φ∗(S1))/I as

the restrictions of Φ. By our assumption, Φ0 has a completely additive almost
lifting, given by say h0 and if we are able to find h1 for Φ1, then we can define h to
simply be h0 ∪ h1 and Φh is easily seen to be a completely additive almost lifting
of Φ. Therefore we may assume that ker(Φ) is {∅}.

Now let D = ω \
⋃
I. For each d ∈ D, since Φ is a homomorphism and Φ∗ is a

lifting
Ud = {C : d ∈ Φ∗(C)}

is an ultrafilter on ω. For each d ∈ D such that Ud is a fixed ultrafilter, d will be
in the domain of hD and define hD(d) to be that integer. Therefore, for C ⊂ ω,
ΦhD

(C) will equal Φ∗(C) ∩ dom(hD). For any C ⊂ ω such that C /∈ Ud for all
d ∈ D \ dom(hD) we have ΦhD

(C) = Φ∗(C)∩D. The ideal generated by such C is
ccc over fin. That is, ΦD has a completely additive almost lifting, hence it suffice
to prove that Φω\D also has such a lifting.

Therefore, we may also assume that
⋃
I = ω. We now let I1 be the ideal

generated by I and {An : n ∈ ω}. By replacing An with ({n} ∪An)\
(⋃

i<n Ai∪n
)
,

we may assume that ω is a disjoint union of An (n ∈ ω). Then Φ∗ is a lifting of
a homomorphism Ψ of P(ω) into P(ω)/I1 such that ker(Ψ) ⊇ fin. Since I1 is
countably generated, by our assumption there is a partial function h : ω → ω such
that Φh is a completely additive almost lifting of Ψ. Let J be a ccc over fin ideal
such that Φh is a lifting of Ψ on J .

Case 1. Assume there is m̄ such that for all n ≥ m̄ we have (writing A =I B for
A∆B ∈ I)

An =I h−1({n}).
Define a partial function h1 : ω → ω so that

h1 agrees with h on ω \
⋃

i<m̄ Ai, and
h1(k) = i if k ∈ Ai and i < m̄.
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We claim that Φh1 is an almost lifting for Φ. It will suffice to check that for X ∈ J
we have

DX = Φh1(X)∆Φ∗(X) ∈ I.

Since Φh(X) =I1 Φ∗(X), there is n ≥ m̄ such that Φh(X) =I Φ∗(X) \
⋃

i<n Ai.
Write Ā =

⋃
i<n Ai. We have Φh1(X)∆Φh(X) ⊆ Ā, therefore DX \ Ā ∈ I. But

Φh1(X) ∩ Ā is equal to
⋃

i∈X∩n Ai modulo I which is equal to Φ∗(X) ∩ Ā modulo
I. Therefore DX ∩ Ā ∈ I, and this concludes the proof.

Case 2. The set X0 = {n : An∆h−1({n}) /∈ I} is infinite. Note that for every Y ⊆
ω and all i we have

i ∈ Y if and only if Ai \ Φ∗(Y ) ∈ I and
i /∈ Y if and only if Ai ∩ Φ∗(Y ) ∈ I.

If moreover Y ∈ J then we have Φh(Y ) =I1 Φ∗(Y ) and therefore
(*) for all but finitely many i we have i ∈ Y if and only if Ai \Φh(Y ) ∈ I and

(**) for all but finitely many i we have i /∈ Y if and only if Ai ∩ Φh(Y ) ∈ I.
We will find Y ∈ J that contradicts (*) or (**), therefore proving that Case 2 leads
to contradiction.

Let us first consider the subcase when

X1 = {i ∈ X0 : (∃ni 6= i) h−1({ni}) ∩Ai /∈ I}
is infinite. First find an infinite X2 ⊆ X1 such that

X2 ∩ {ni : i ∈ X2} = ∅.
Then find Y ⊆ {ni : i ∈ X2} such that Y ∈ J and {i ∈ X2 : ni ∈ Y } is infinite (we
are allowing Y itself to be finite). But there are infinitely many i ∈ X2 such that
ni ∈ Y . Therefore Φh(Y ) ∩Ai /∈ I for all such i, contradicting (**).

So it only remains to check the case when for all but finitely many i ∈ X0 we
have

h−1({n}) ∩Ai ∈ I
for all n 6= i. Let X1 be the set of such i. Since I is countably generated, for each
i ∈ X1 we can find an infinite Ji ⊆ ω such that

for every infinite C ⊆ Ji we have Φh(C) ∩Ai /∈ I.
Find an infinite Y ⊆ X1 such that Y ∈ J and Ji \Y is infinite for all i ∈ X1. Then
for every i ∈ Y we have Ai \ Φh(Y ) /∈ I, contradicting (*).

This exhausts all possibilities and concludes the proof. �

The following is an immediate consequence of Theorem 3.2 and Theorem 3.3.

Corollary 3.4. Assume OCA and MA and let I be a countably generated ideal
on ω. Then every homomorphism of P(ω) into P(ω)/I has a completely additive
almost lifting. �

Definition 3.5. If θ is a cardinal, λ is any set, and Φ: P(ω)/J → P(λ)/I is a
homomorphism, then F : P(ω) → P(λ) is a θ-almost lifting of Φ if the set

{A ∈ P(ω) : Φ∗(A) =I F (A)}
includes an ideal that is θ-cc over fin.

In particular, an ℵ1-almost lifting is an almost lifting in the usual sense. The
main result of this section is the following.
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Theorem 3.6. Assume OCA and MA and let I be a countably generated ideal
on ω1. Then every homomorphism Φ: P(ω) → P(ω1)/I has a completely additive
ℵ2-almost lifting.

Proof. Let Φ be as above and let Φ∗ be a lifting for Φ. Fix an increasing sequence
An (n ∈ ω) of subsets of ω1 which generate I. Let D = ω1 \

⋃
n∈ω An. Then,

analogous to what we saw in Theorem 3.3, ΦD has a completely additive lifting.
Also, if

⋃
n∈ω An is countable, then Φ has a completely additive almost lifting by

Theorem 3.2. Hence we may assume

ω1 =
⋃
n∈ω

An.

Let J be the ideal orthogonal to I:

J = {B : An ∩B is finite for all n}.

By our convention that ω1 is covered by the union of Ans, every set in J is count-
able. An easy diagonalization argument shows that if Bn ∈ J for n ∈ ω, then there
is B ∈ J such that Bn \ B is finite for all n. (Such a family J is usually called a
P-ideal of countable sets, or just a P-ideal if J ⊆ P(ω).)

By Corollary 3.4, for every B ∈ [ω1]ℵ0 we can fix B̄ ⊆ B and hB : B̄ → ω such
that the mapping ΦhB

is an almost lifting of ΦB . Define partitions [[ω1]ℵ0 ]2 =
K0 ∪K1, [[ω1]ℵ0 ]2 = Kn

0 ∪Kn
1 (n ∈ ω), for n ∈ ω as follows:

(1) {A,B} ∈ K0 if and only if hA(ξ) 6= hB(ξ) for some ξ ∈ A ∩B.
(2) {A,B} ∈ Kn

0 if and only if hA(ξ) 6= hB(ξ) for some ξ ∈ (A ∩B) \An.
The following is almost identical to [Far00, Lemma 3.8.4], but we will reproduce
the proof for the reader’s convenience.

Lemma 3.7. For all A,B in [ω1]ℵ0 there is a large enough n such that {A,B} ∈
Kn

1 .

Proof. Assume there is no such n. For every n find ξn ∈ (A ∩ B) \ An such that
hA(ξn) 6= hB(ξn). By applying Ramsey’s theorem, we may find an infinite D ⊆ ω
such that hA(ξm) 6= hB(ξn) for all {m,n} ⊆ D. The family ((ΦA)∗ and (ΦB)∗ are
arbitrary liftings of ΦA, ΦB , respectively)

{C ⊆ ω : (ΦA)∗(C) =I ΦhA
(C) & (ΦB)∗(C) =I ΦhB

(C)}

includes an ideal that is ccc over fin, and therefore nonmeager ([Far00, Lema 3.3.2]).
So we can find an infinite C ⊆ ω such that the set⋃

n∈C

{hA(ξn), hB(ξn)}

belongs to this ideal (by a well-known result of Jalali-Naini and Talagrand, see e.g.,
[Far00, Lemma 3.10.2]). The sets

XA = {hA(ξn) : n ∈ C}
XB = {hB(ξn) : n ∈ C}

are disjoint. Hence Φ∗(XA) ∩ Φ∗(XB) ∈ I. But Φ∗(XA) ∩ A is equal to h−1
A (XA),

modulo I, and Φ∗(XB) ∩ B is equal to h−1
B (XB), modulo I. Since h−1

A (XA) ∩
h−1

B (XB) is not included in any An (as it contains ξm for some m > n), we have a
contradiction. �
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Consider [ω1]ℵ0 and J as posets under the ordering ⊆∗ of inclusion modulo finite:
A ⊆∗ B if and only if A \B is finite. Since [ω1]ℵ0 and J are P-ideals of countable
sets, posets ([ω1]ℵ0 ,⊆∗) and (J ,⊆∗) are σ-directed.

Lemma 3.8. If for some m̄ there is X1 ⊆ [ω1]ℵ0 that is Km̄
1 -homogeneous and

cofinal in ([ω1]ℵ0 ,⊆∗), then Φ has a completely additive ℵ2-almost lifting.

Proof. The homogeneity of X1 implies that

h =
⋃

B∈X1

hB � (B \Am̄)

is a function. Assume Φh is not an ℵ2-almost lifting of Φ, and let Bξ (ξ < ω2) be
an almost disjoint family of subsets of ω such that the set

Yξ = Φ∗(Bξ)∆Φh(Bξ)

is not in I for all ξ.
Since I is countably generated, for every X ∈ I+ there is a δ < ω1 such that

X ∩ δ ∈ I+. Find a countable ordinal δ such that Yξ ∩ δ is not in I for ℵ2 many ξ.
There is B ∈ X1 such that δ ⊆∗ B. Since ΦhB

(Bξ) \Am̄ = Φh(Bξ) ∩ (B \Am̄) and

[(Φ∗(Bξ) ∩B)∆ΦhB
(Bξ)] \Am̄ = [(Φ∗(Bξ) ∩B)∆Φh(Bξ) ∩B] \Am̄ =

= [Φ∗(Bξ)∆Φh(Bξ)] ∩ [B \Am̄] = Yξ ∩ [B \Am̄],

we have (Φ∗(Bξ) ∩ B)∆ΦhB
(Bξ) /∈ I for uncountably many ξ, contradicting the

fact that ΦhB
is an almost lifting of ΦB . �

In order to prove the assumption of Lemma 3.8 we will define partitions [[ω1]ℵ0 ]2 =
L0(C) ∪ L1(C) (C ⊆ ω) and [[ω1]ℵ0 ]2 = Ln

0 (C) ∪ Ln
1 (C) (n ∈ ω, C ⊆ ω) as follows:

(3) {A,B} ∈ L1(C) if and only if hA(ξ) ∈ C ⇔ hB(ξ) ∈ C, for all ξ ∈ A ∩B.
(4) {A,B} ∈ Ln

1 (C) if and only if hA(ξ) ∈ C ⇔ hB(ξ) ∈ C, for all ξ ∈
(A ∩B) \An.

Lemma 3.9. For every C ⊆ ω the following hold:
(a) There are Hn (n ∈ ω) such that each Hn is Ln

1 (C)-homogeneous and
[ω1]ℵ0 =

⋃
nHn.

(b) There are H′
n (n ∈ ω) such that each H′

n is Ln
1 (C)-homogeneous and J =⋃

nH′
n.

(c) J has no uncountable Lk
0(C)-homogeneous subsets for any k.

Proof. (a) For each B ∈ [ω1]ℵ0 , since B is countable it follows from [Far00, Lemma
3.3.4] that there is a B̄ ⊆ B such that ΦhB

is a lifting of ΦB̄ and ker(ΦB\B̄) is ccc
over fin. We may assume that B̄ = dom(hB). There is also an n = n(B) such that

ΦhB
(C)∆(Φ∗(C) ∩ B̄) ⊆ An.

Let
Hn = {B ∈ [ω1]ℵ0 : n(B) = n}.

It will suffice to show that each Hn is Ln
1 (C)-homogeneous. Fix A and B in Hn.

Pick ξ ∈ (dom(hA) ∩ dom(hB)) \ An. To check that {A,B} ∈ Ln
1 (C), note that

hB(ξ) ∈ C if and only if ξ ∈ Φ∗(C) if and only if hA(ξ) ∈ C. Hence {A,B} ∈ Ln
1 (C).

Clause (b) follows from (a) since J ⊂ [ω1]ℵ0 .
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In order to prove (c), we may assume k = 0 since Lk
0(C) ⊆ L0

0(C) = L0(C) for
all k. Fix Y = {Bα : α < ω1} included in J . By part (b), it has an uncountable in-
tersection with some H′

n, so we may assume Y is Ln
1 (C)-homogeneous. By refining,

we may assume that the sets
Fα = Bα ∩An

form a ∆-system with root R, and that the functions χC ◦ hBα
agree on R (χC is

the characteristic function of C). For α < β pick ξ ∈ Bα ∩ Bβ = B̄α ∩ B̄β . We
claim that

χC ◦ hBα
(ξ) = χC ◦ hBβ

(ξ).
If ξ /∈ An, this follows by the Ln

1 (C)-homogeneity. If ξ ∈ An, then ξ ∈ R, hence the
conclusion follows.

We have shown that every uncountable subset of [ω1]ℵ0 contains an uncountable
L1(C)-homogeneous subset, and this implies (c). �

Let C be the forcing for adding a single Cohen subset of ω, and let Ċ be the canon-
ical C-name for it. Since C has the countable chain condition, it forces that (J V ,⊆∗)
and (([ω1]ℵ0)V ,⊆∗) are still σ-directed in the extension. For B ∈ ([ω1]ℵ0)V let
hĊ

B = χĊ ◦ hB (χĊ is the characteristic function of Ċ).
Assume for a moment that some condition p ∈ C forces that there is n̄ for which

some Ln̄
1 (Ċ)-homogeneous set Ḣ is cofinal in (([ω1]ℵ0)V ,⊆∗). (It should be noted

that this does not follow by Lemma 3.9, in particular because Φ∗(Ċ) is not defined.)
Since C is countable, there is a single condition q ≤ p such that

X = {B : q 
 B̌ ∈ Ḣ}
is cofinal in ([ω1]ℵ0 ,⊆∗). For B ∈ X , fix mB such that

(1) B ∩ (ΦhB
(s)∆Φ∗(s)) ⊆ Am(B) for all s ⊆ dom(q),

(2) Φ∗({i}) ∩ Φ∗({j}) ⊆ Am(B) for all distinct i and j contained in dom(q).

To see that we can assure (1), note that since ΦhB
is an almost lifting of ΦB ,

B ∩ ΦhB
(s) =I Φ∗(s) for all finite s.

Since ([ω1]ℵ0 ,⊆∗) is σ-directed, there is an m̄ ≥ n̄ such that X1 = {B ∈ X : m̄ =
mB} is cofinal in ([ω1]ℵ0 ,⊆∗) (see e.g., [Far00, Lemma 2.2.2]).

Claim 4. The set X1 is Km̄
1 -homogeneous.

Proof. We need to prove that the functions hB � (B \Am̄) for B ∈ X1 are pairwise
compatible. (We say that two functions are compatible if they agree on the inter-
section of their domains.) Assume not, and fix A,B in X1 and ξ ∈ (A ∩ B) \ Am̄

such that i = hA(ξ) 6= hB(ξ) = j.
Assume for a moment that {i, j} ⊆ dom(q). By (1), we have ξ ∈ Φ∗({i}) and

ξ ∈ Φ∗({j}), so Φ∗({i}) ∩ Φ∗({j}) 6⊆ Am̄, contradicting (2).
Therefore we must have i /∈ dom(q) or j /∈ dom(q), and in either case we can

find r ≤ q such that
r 
 |Ċ ∩ {i, j}| = 1.

But then r forces that χĊ ◦hB(ξ) 6= χĊ ◦hA(ξ), and therefore that {A,B} ∈ Lm̄
0 (Ċ),

a contradiction. �

By Claim 4 and Lemma 3.8, this concludes the proof modulo the assumption
that some condition p ∈ C forces that there is n̄ for which some Ln̄

1 (Ċ)-homogeneous
set Ḣ is cofinal in (([ω1]ℵ0)V ,⊆∗). So assume that this fails, and C forces that a
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cofinal Ln
1 (Ċ)-homogeneous subset of (([ω1]ℵ0)V ,⊆∗) does not exist for any n ∈ ω.

The proof of Theorem 3.6 will be completed once we prove that this assumption
leads to a contradiction.

Recall that for every δ < ω1 there is a partial map

hδ : δ → ω

such that Φhδ
is a completely additive almost lifting of Φδ.

Let C be a Cohen-generic subset of ω over V . In V [C] we will define a ccc poset
P that forces an uncountable Z ⊆ ω1 and for each ξ ∈ Z a Bξ ⊆ ξ such that Bξ∩An

is finite for all n and the functions in {hξ � Bξ : ξ ∈ Z} are pairwise incompatible.
A typical condition p of P is a triple (F, n, 〈sξ : ξ ∈ F 〉) such that
(P0) F is a finite set of countable ordinals,
(P1) n ∈ ω,
(P2) sξ is a finite subset of An ∩ ξ,
(P3) The functions χC ◦ hξ � sξ (ξ ∈ F ) are pairwise incompatible.

The ordering on P is defined by letting p ≤ q if F p ⊇ F q, np ≥ nq, and
(P4) sp

ξ ∩Anq = sq
ξ for all ξ ∈ F q.

If G is a sufficiently generic filter of P, then for ξ ∈ Z =
⋃

q∈G F q the set Bξ =⋃
p∈G sp

ξ is orthogonal to I, and the family of gξ = hξ � Bξ (ξ ∈
⋃

p∈G F p) are such
that χC ◦ gξ are pairwise incompatible. Since Bξ ⊆ ξ, Φgξ

is an almost lifting of
ΦBξ .

Claim 5. The poset P is ccc.

Proof. Let pα (α < ω1) be an uncountable subset of P. By going to an uncountable
subset, we can assume that the sets Fα = F pα form a ∆-system with root F̄ , that
all nα = npα are equal to some fixed n̄, and that for some s̄ξ (ξ ∈ F̄ ) and all α we
have sα

ξ = s̄ξ. By Lemma 3.7, for each α there is an mα ≥ n̄ large enough so that
{ξ, η} ∈ Kmα

1 for all ξ, η ∈ Fα. Find m̄ such that mα = m̄ for uncountably many
α. For each of these α let

ξ(α) = min(Fα \ F̄ ).
The set of all ξ(α) is cofinal in [ω1]ℵ0 , and it is therefore not Lm̄

1 (C)-homogeneous,
by our assumption. Therefore there are α 6= β and γ ∈ (ξ(α)∩ξ(β))\Am̄ such that
hξ(α)(γ) ∈ C and hξ(β)(γ) 6∈ C. Let i > m̄ be such that γ ∈ Ai. Define a condition
q as follows: Let F q = Fα ∪ F β , nq = i + 1, sq

ξ = s̄ξ for ξ ∈ F̄ , and sq
ξ = sδ

ξ ∪ {γ}
for ξ ∈ F δ \ F̄ (if δ ∈ {α, β}).

For all η ∈ Fα \ F̄ we have

hη(γ) = hξ(α)(γ) ∈ C

and for all η ∈ F β \ F̄ we have

hη(γ) = hξ(β)(γ) /∈ C,

so the functions χC ◦ hη � sq
η (η ∈ F q) are pairwise incompatible.

Therefore q extends both pα and pβ . This proves that P is ccc. �

Since P is ccc, some p ∈ P forces that Z =
⋃

q∈G F q is uncountable. By applying
MA to C ∗P and an appropriate family of dense sets, we get C ⊆ ω, an uncountable
Z ⊆ ω1, and pairs (Bξ, gξ) (ξ ∈ Z) such that Bξ ∈ J , gξ : Bξ → ω, and Φgξ

is an
almost lifting of ΦBξ for all ξ ∈ Z, and moreover the functions χC ◦ gξ (ξ < ω1) are
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pairwise incompatible. If the partition L0
0(C) is re-evaluated using functions gξ in

place of hBξ
, the set {Bξ : ξ ∈ Z} is L0

0(C)-homogeneous. But this contradicts (c)
of Lemma 3.9. This concludes the proof of Theorem 3.6 �

The Cohen poset was used in a similar context of liftings by Christensen–
Kanovei–Reeken ([CKR]), Kanovei–Reeken ([Far04, §8]), and Velickovic ([Vel93,
Theorem 4.1]). The first two references apply forcing to Borel liftings, while Velick-
ovic proved that under MA and OCA all automorphisms of P(ω1)/ fin are trivial
using, instead, the forcing for adding ℵ1 side-by-side Cohen reals.

Corollary 3.10. Assume OCA and MA. If B is a subalgebra of P(ω1) such that
P(ω) is a subalgebra of B/I for some countably generated ideal I, then P(ω) is a
subalgebra of B.

Proof. If Ψ: P(ω) → B/I is a monomorphism, then it is also a lifting of a homo-
morphism Φ: P(ω) → P(ω1)/I0, where I0 is an ideal on ω1 generated by I. Let
{In : n ∈ ω} be an increasing chain of members of I which generates I0. Let
h : ω1 → ω be such that Φh is an ℵ2-almost lifting of Φ. Thus, if Aξ (ξ < c) is
any almost disjoint family of infinite subsets of ω, then there is a member of the
family, say A0, such that Ψ(B) =I0 Φh(B) for all B ⊆ A0. For each such B, we
may let nB ∈ ω be minimal such that Φh(B) \ InB

∈ B. We will now prove there
is an infinite subset A of A0 and an integer m such that nB ≤ m for all B ⊂ A.
Fix any pairwise disjoint family of infinite subsets of A0, say {Ck : k ∈ ω} and
assume that for each k, there is a Bk ⊂ Ck such that nBk

> nk = max{k, nCk
}.

Fix any B ⊂ A0 such that B ∩ Ck is almost equal to Bk for each k and note that
Φh(B) \ Ink

∩Φh(Ck) \ Ink
is not in B for each k. For k ≥ nB , this contradicts the

fact that Φh(B) \ InB
∈ B.

The proof is completed then by observing that the following is an embedding of
P(A) into B. For each B ⊂ A, define f(B) to be Φh(B) \ Im if minA /∈ B and to
be Φh(B) ∪ Im if minA ∈ B. �

The following is a topological restatement of Corollary 3.10.

Corollary 3.11. Assume OCA and MA. If a compact zero-dimensional space X
has density at most ω1, and has a closed Gδ-set which maps onto βN , then X itself
maps onto βN . �

The weak Extension Principle was studied in [Far00, Chapter 4]. The dual of
Theorem 3.2 is its special case. The following corollary has a similar flavor.

Corollary 3.12. If G is a closed Gδ subset of βω1 and f : G → βω is continuous,
then there is a clopen U ⊆ G such that f � U continuously extends to βω1 and
f ′′(G \ U) is nowhere dense.

Proof. Let I be the countably generated ideal on ω1 such that G = {p ∈ βω1 :
p∩I = ∅}. Apply Theorem 3.6 to the homomorphism Φ: P(ω) → P(ω1)/I dual to
f to obtain h. Let C = dom(h) and U = βC∩G. Then the continuous extension of
h : C → ω to a map from βC → βω extends f � U . The image of G \U is included
in the set

X = {p ∈ βω : p ∩ ker(Φω1\C) = ∅}.
This set has the property that every family of pairwise disjoint open subsets of ω∗

each of which intersects X has size at most ℵ1 < c, and it is therefore nowhere
dense. �
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In [Far00] it was conjectured that the statement ‘every continuous f : ω∗ → βω
continuously extends to βω’ is consistent with ZFC.

Question 3.13. Is the following consistent with ZFC: If G is a closed Gδ subset
of some βκ then every continuous f : G → βω continuously extends to βκ.

It may be worth mentioning that Velickovic has proved that under PFA ev-
ery automorphism of any κ∗ continuously extends to a function from βκ to βκ
([Vel93]). A survey of some related extension principles and conjectures (or rather
their algebraic duals) for quotients P(ω)/I can be found in [Far∞].

4. Limitations

We shall now see that Theorem 3.6 cannot be further improved by replacing ω1

with c. Let us say that A is completely embeddable into B if there is a completely
additive monomorphism Φ: A → B, namely such that Φ(

∨
X ) =

∨
a∈X Φ(a) for

every X ⊆ A. Let us state a slight strengthening of Corollary 3.10.

Corollary 4.1. Assume OCA and MA. If B can be embedded into P(ω1), then the
following are equivalent:

(1) P(ω) embeds into B
(2) P(ω) completely embeds into B.
(3) P(ω) embeds into B/I for some countably generated ideal I on B.

Proof. The only nontrivial implication is (3) implies (2), and it is an immediate
consequence of Theorem 3.6 and the embedding as defined in Corollary 3.10. �

Proposition 4.2. There is a subalgebra B of P(c) such that P(ω) is embeddable,
but not completely embeddable, into B.

Proof. Let X be any countably compact dense subset of βω such that X has car-
dinality c (see [Nov53]). It is easy to see that every infinite closed subset of X has
cardinality c.

We let B denote the algebra generated by the clopen subsets of X together with
the singletons. Equivalently, B is the algebra of all sets of the form (A is the closure
of A in βω intersected with X)

H0 ∪ (A \H1)

for A ⊂ ω and finite subsets H0,H1 of X. To see this, note that all sets of the
above form are in B and that such sets form a Boolean algebra.

Mapping Φ(A) = A is an embedding of P(ω) into B. Assume there is a complete
embedding Ψ: P(ω) → B. Let Ψ({n}) = bn. We can fix the sets An ⊂ ω and the
finite sets Hn

0 ,Hn
1 such that bn = Hn

0 ∪ (An \ Hn
1 ). We may of course assume

that Hn
1 is disjoint from ω. Note that the sets Am (m ∈ ω) are pairwise disjoint.

For now we can consider cn = Hn
0 ∪ An and points x ∈ X which are limits of

the family {cn : n ∈ ω} and which are not in
⋃

n bn or in
⋃

n Hn
0 . Since there are c

such limits, such x exists.
Then Ψ(ω) = X =

∨
n bn. But {x} ∧

∨
n bn = 0B , a contradiction. �

Let us note that Theorem 3.6 cannot be improved by replacing ℵ2-cc with ccc.

Proposition 4.3. There is a homomorphism Φ: P(ω) → P(ω1) with no completely
additive almost lifting.
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Proof. Let Aξ (ξ < ω1) be an almost disjoint family of infinite subsets of ω and let,
for each ξ ∈ ω1, Uξ 3 Aξ be a nonprincipal ultrafilter. Define Φ: P(ω) → P(ω1) by

Φ(C) = {ξ : C ∈ Uξ}.
Then ker(Φ) ⊇ P(ω)\

⋃
ξ Uξ. The mapping F : P(ω) → P(ω1) defined by F (C) = ∅

is a lifting of Φ on the ideal ker(Φ), but this ideal is not ccc over fin (as the sets Aξ

witness). However if h : ω1 → ω is any partial function with non-empty domain,
then it is easy to see that Φh is also not an almost lifting of Φ. Indeed, fix any
α ∈ dom(h) and almost disjoint subsets of ω, {Bξ : ξ ∈ ω1}, such that h(α) ∈ Bξ

for each ξ and Bξ /∈ Uη for all η. By construction Φ(Bξ) is ∅ for all ξ, and yet
α ∈ h−1(Bξ) = Φh(Bξ) for all ξ. �
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