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Abstract

In the context of definable algebras Maharam’s and von Neumann’s
problems essentially coincide. Consequently, random forcing is the only
definable ccc forcing adding a single real that does not make the ground
model reals null, and the only pairs of definable ccc σ-ideals with the
Fubini property are (meager, meager) and (null, null).

In Scottish Book, von Neumann asked whether every ccc, weakly distributive
complete Boolean algebra carries a strictly positive probability measure. Von
Neumann’s problem naturally splits into two: (a) whether all such algebras
carry a strictly positive continuous submeasure, and (b) whether every algebra
that carries a strictly positive continuous submeasure carries a strictly positive
measure. The latter problem is known under the names of Maharam’s Problem
and Control Measure Problem (see [16], [9], [5, §393]). While von Neumann’s
problem has a consistently negative answer ([16]), Maharam’s problem can be
stated as a Σ1

2 statement and is therefore, by Shoenfield’s theorem, absolute
between transitive models of set theory containing all countable ordinals.

Theorem 0.1. Let I be a c.c.c. σ-ideal on Borel subsets of 2ω that is analytic
on Gδ. The following are equivalent:

• PI is a weakly distributive notion of forcing

• there is a continuous submeasure on 2ω such that I is the σ-ideal of its
null sets.

A suitable large cardinal assumption implies that the assumption ‘I is analytic
on Gδ’ can be relaxed to ‘I is definable.’
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Here PI is the partial ordering of I-positive Borel sets under inclusion, and
its regular open algebra is isomorphic to the quotient Borel/I. Thus, the von
Neumann’s problem restricted to regular open algebras of definable partial or-
ders of the form PI coincides with the Control Measure Problem.

Our result was obtained in November 2003. In December 2003 we learned
that Balcar, Jech and Pazák ([2]) and independently Velickovic ([26]) proved
that under the P-ideal dichotomy ([24]) every c.c.c. weakly distributive com-
plete Boolean algebra carries a strictly positive continuous submeasure. Since
the case of P-ideal dichotomy relevant to Boolean algebras size continuum can
always be forced without adding reals ([1]), Theorem 0.1 follows via an absolute-
ness argument. Quickert ([17]) used the P-ideal dichotomy earlier in a similar
context.

In order to state some interesting consequences of our theorem succintly we
quote the large cardinal version.

Corollary 0.2 (LC). Suppose I is a definable c.c.c. σ-ideal on 2ω. Then
exactly one of the following holds:

1. There is a Borel set B ⊂ 2ω × 2ω with all vertical sections in I and all
horizontal sections of full Haar measure.

2. There is a condition p ∈ PI such that PI below p is isomorphic to the
random forcing.

In other words, if PI does not force that the set of ground model reals is
null, then PI is the random forcing. Modulo Theorem 0.1, this is a consequence
of a result of Christensen ([4]). By an earlier result of Shelah a similar result
holds on the meager side.

Fact 0.3 (LC). ([20], see also [27]) Suppose I is a definable c.c.c. σ-ideal
on 2ω. Then exactly one of the following holds:

1. There is a Borel set B ⊂ 2ω × 2ω with all vertical sections in I and all
horizontal sections comeager.

2. There is a condition p ∈ PI such that PI below p is isomorphic to the
Cohen forcing.

Another attractive corollary is that, up to the isomorphism, the only de-
finable c.c.c. σ-ideals for which Fubini theorem holds are meager and null
(Theorem 3.3). This shows that, under a large cardinal assumption, those two
ideals are the only ‘reasonable’ ideals as introduced by Kunen in [14].

Terminology

Notation in this paper follows the set theoretic standard of [8]. For information
on large cardinals and L(R) see also [11]. An ideal I is analytic on Gδ if for
every Gδ set A ⊆ 2ω × 2ω the set of all x such that the vertical section of A
at x is in I is analytic. Both meager and null are analytic on Gδ (see [12]).
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Throughout the paper we will say that an ideal is definable if it belongs to the
inner model L(R). The suitable large cardinal assumption in Theorem 0.1 if I
is in L(R) is that there are ω Woodin cardinals with a measurable above them
all. In all the subsequent results of this note no large cardinal assumptions are
needed if I is assumed to be analytic on Gδ.

A continuous submeasure (or a Maharam submeasure) on a complete Boolean
algebra B is a function φ such that

1. A ⊆ B implies φ(A) ≤ φ(B),

2. φ(A ∪B) ≤ φ(A) + φ(B),

3. φ(0B) = 0, and

4. if An is a decreasing sequence in B then φ(
⋂

nAn) = limn φ(An).

A complete Boolean algebra that carries a strictly positive continuous submea-
sure is called a submeasure algebra.

A forcing notion is bounding (or weakly distributive) if every element of ωω in
the extension is dominated by a ground-model function in ωω. We use the words
“bounding” and “weakly distributive” interchangeably. It is entirely irrelevant
which uncountable Polish space the ideals in question measure; our choice is the
Cantor space 2ω for definiteness and ease of notation. To weed out trivial cases,
we assume that ideals contain all singletons.

1 The proof of Theorem 0.1

If I is the ideal of null sets of some continuous submeasure then PI is weakly
distributive (see e.g., [5, 392I]). Suppose now that I is a definable, weakly dis-
tributive c.c.c. σ-ideal on Borel subsets of 2ω. To find a continuous submeasure
generating I we will use two ingredients. One is almost trivial:

Fact 1.1 ([28] Lemma 2.2.3.). Suppose I is a σ-ideal on 2ω such that PI is
proper. The following are equivalent:

• PI is weakly distributive

• compact sets are dense (every I-positive Borel set has an I-positive com-
pact subset) and PI allows continuous reading of names (for every I-
positive Borel set B and a Borel function f : B → ωω there is an I-positive
set C ⊂ B such that f � C is continuous).

This implies that I has a basis consisting of Gδ sets. For let A ∈ I be a Borel
set. The collection of compact I-positive sets disjoint from A is dense in PI :
for every I-positive Borel set B, the set B \ A is still Borel and I-positive and
therefore it has a compact I-positive subset. Choose then a maximal antichain
X consisting of such compact sets. Since PI is c.c.c. X is countable and 2ω\

⋃
X

is a Gδ set in I covering the set A.
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The other ingredient is a result of Solecki. For an ideal I on 2ω let Î be the
collection of subsets of 2<ω defined by putting a ∈ Î if the set Ba = {r ∈ 2ω : for
infinitely many n, r � n ∈ a} is in I. It is immediate that Î is an ideal, because
Ba∪b = Ba ∪Bb and so if both Ba, Bb ⊂ 2ω are in the σ-ideal I, so is Ba∪b.

Fact 1.2. Suppose I is a σ-ideal on Borel subsets of 2ω that is analytic on Gδ.
The following are equivalent:

• Î is a P -ideal and I has a basis consisting of Gδ sets

• There is a continuous submeasure on 2ω such that I is the collection of its
null sets.

Furthermore, large cardinals imply this equivalence for every definable I.

Proof. This was proved in [22, Theorem 5.2] in the case when I is analytic
on Gδ. The definability assumption was used in this proof only to show that Î
is analytic. Assuming large cardinals, in [23, Theorem 4] it was proved that all
definable P-ideals are analytic.

Fact 1.2 clearly implies that we will be done once we prove Î is a P -ideal.
We fix a collection {an : n ∈ ω} ⊂ Î and aim to construct b ∈ Î which includes
each of them up to a finite set.

Claim 1.3. The collection of compact I-positive sets C such that their associ-
ated tree on 2<ω has a finite intersection with each an (n ∈ ω) is dense in PI .

Proof. Suppose A ∈ PI is a positive Borel set. Then B = A \
⋃

nBan is still
an I-positive Borel set, and the function f : B → ωω, f(r)(n) = max{m ∈ ω :
r � m ∈ an}, is Borel and well-defined on it. By Fact 1.1, there is an I-positive
compact set C ⊂ B such that f � C is continuous. By a compactness argument,
for every n the set {f(r)(n) : r ∈ C} is finite. The claim follows.

Let X be a maximal antichain of I-positive compact sets from the claim.
Since PI is c.c.c., X is countable. Let X = {Ck : k ∈ ω} and let Tk ⊂ 2<ω be
the tree associated with the compact set Ck. Finally, let b ⊂ 2<ω be the set⋃

n(an\
⋃

k<n Tk). It is clear that b includes every an modulo finite. To show that
Bb ∈ I and b ∈ Î, note that for every k ∈ ω the intersection Tk ∩ b =

⋃
n≤k an is

finite, and so the set Bb is disjoint from
⋃
X. However, the antichain X ⊂ PI

was chosen to be maximal, and therefore the set 2ω \
⋃
X is I-small and so is

its subset Bb. The theorem follows.

2 Fubini failing

A submeasure φ is pathological if it does not dominate a positive nonzero finitely
additive functional. A control measure for a continuous submeasure φ is a
measure µ that has the same null sets as φ. A continuous submeasure is Borel
if it is defined on the Borel algebra on 2ω. A submeasure is diffuse if all countable
sets are null. All results of this section are probably well-known.
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Lemma 2.1. The following are equivalent for a diffuse continuous Borel sub-
measure φ.

1. φ is pathological.

2. There is a φ-positive set B such that the restriction of φ to B has a control
measure.

3. There is a φ-positive set B such that PNull(φ) is forcing equivalent to ran-
dom below B.

Proof. Let us write I = Null(φ). Assume (1), so there is a nonzero finitely
additive functional ν ≤ φ dominated by φ. There are two cases.

Assume there is a φ-positive set B such that ν(C) 6= 0 for every I-positive
set C ⊂ B. Then Borel/I is weakly distributive (see e.g., [5, 392I]). By [5, 391D]
there is a strictly positive measure on Borel/I, and therefore (2) holds.

Otherwise, every φ-positive set B contains a φ-positive set C such that
ν(C) = 0. In this case, choose a maximal antichain {Cn : n ∈ ω} of sets such
that φ(Cn) > 0 and ν(Cn) = 0, enumerated using the ccc of Borel/I. Consider
the sets Dm =

⋃
n>m Cn. By the finite additivity of the functional ν it is the

case that ν(Dm) = ν(2ω) for all m ∈ ω. By the continuity of the submeasure φ,
the numbers φ(Dm) converge to zero, since the Dms form a decreasing collection
of sets with empty intersection. This contradicts ν ≤ φ.

Clause (2) implies (1) by [6, Theorem 2]. The equivalence of (2) and (3)
follows by the separable case of Maharam’s theorem.

Lemma 2.2. If φ is a continuous Borel submeasure then there is a Borel set A
such that φ has a control measure on B and is pathological on B{.

Proof. Find a maximal family F of pairwise orthogonal measures dominated by
φ, and let B be the union of their supports. By the ccc-ness of Borel/Null(φ),
F is countable. If F = {µi|i ∈ ω} then

∑
i 2−iµi is a control measure for φ on

B. By Lemma 2.1, φ is pathological on the complement of B.

Lemma 2.3 below was roughly proved by Christensen [4, Theorem 6]. We
shall use his result. Let µ denote the Lebesgue measure on [0, 1]; the choice is
immaterial as any other diffuse Borel probability measure would do.

Lemma 2.3. Suppose I is the null ideal for some continuous Borel submeasure
φ on 2ω. Exactly one of the following holds:

1. There is a φ-positive Borel set B such that the restriction of φ to B has a
control measure.

2. There is a Borel set C ⊆ [0, 1] × 2ω such that φ(Cx) = 0 for all x ∈ [0, 1]
and µ([0, 1] \ Cy) = 0 for every y ∈ 2ω.

Proof. By Fubini’s theorem, (1) excludes (2). Suppose now that (1) fails. By
Lemma 2.1, φ is pathological. Christensen proved in [4, Theorem 6], Theorem
6 that if φ is pathological then (2) holds.
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A submeasure φ on 2ω is normalized if φ(2ω) = 1.

Lemma 2.4. Assume ψ is a normalized pathological Borel submeasure. Then
for every n ∈ N there are pairwise disjoint sets Ai (i < n) of submeasure at
least 1/3 each.

Proof. This was proved by Kalton and Roberts ([10]) for an unspecified ε > 0
in place of 1/3, and sharpened by Louveau ([15]) to the present form.

Lemma 2.5. Assume φ and ψ are normalized diffuse continuous Borel submea-
sures on 2ω and ψ is pathological. Then there is a Borel set C ⊆ 2ω × 2ω such
that ψ(Cx) ≥ 1/3 for all x ∈ 2ω and φ(Cy) = 0 for all y ∈ 2ω.

Proof. Since φ is diffuse and continuous, every set of submeasure δ has a subset
of submeasure ε for every ε ∈ [0, δ]. For each n fix a maximal antichain of Borel
sets such that the submeasure of each one is between 2−n−1 and 2−n. Since φ
is continuous, this antichain is finite and we can enumerate it as Bn

i (i < kn).
Using Lemma 2.4, fix a partition of 2ω into Borel sets An

i (i < kn) such that
ψ(An

i ) ≥ 1/3 for all n and i. Let

C(n) =
kn−1⋃
i=0

Bn
i ×An

i and C =
∞⋂

m=0

∞⋃
n=m

C(n).

Note that ψ(C(n)x) ≥ 1/3 and that φ(C(n)y) ≤ 2−n for all x, y in 2ω. Therefore
for all x, y we have ψ(Cx) ≥ 1/3 and φ(Cy) ≤

∑∞
n=m 2−n = 2−m+1 for all m,

hence φ(Cy) = 0.

Lemma 2.6. Assume φ and ψ are diffuse Borel continuous submeasures and φ
does not have a control measure. Then there is a Borel set A ⊆ 2ω × 2ω such
that ψ(Ax) = 0 for all x and infy φ(Ay) > 0.

Proof. Let A be a Borel set such that the restriction of φ to D{ has a control
measure while the restriction of φ to D is pathological, as given by Lemma 2.2.
By our assumption, φ(D) > 0. Again using Lemma 2.2, find a Borel partition
2ω = B ∪C so that ψ has a control measure on B and is pathological on C. By
Lemma 2.3 there is Borel E ⊆ D × B such that φ(Ey) = φ(D) for all y ∈ B
and ψ(Ex) = 0 for all x. By Lemma 2.5 there is a Borel F ⊆ D × C such that
φ(F y) ≥ 1

3φ(D) for all y ∈ C and ψ(Fx) = 0 for all x. Then A = E ∪ F is as
required.

3 Non-commutativity

Given σ-ideals I and J on the real line, let I ⊥ J be the statement that there
is a Borel subset B of the plane such that all of its vertical sections are in the
ideal J and all of the horizontal sections of the complement are in the ideal
I. Thus I ⊥ J means that the Fubini theorem between I and J fails in a
particularly violent manner. For example, if I = meager∩null then (I, I) does
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not have the Fubini property yet I ⊥ I does not hold either. If the σ-ideals I
and J are definable and c.c.c. then I ⊥ J is easily seen to be equivalent to both
PI 
 2ω ∩ V ∈ J̇ and PJ 
 2ω ∩ V ∈ İ [28, 5.4.8].

Results of this section do not any require large cardinals if the ideals are
assumed to be analytic on Gδ. This is because in this case both the compatibility
and the incompatibility relations of PI are analytic, and therefore the result of
[21] applies. Let us recall and prove Corollary 0.2.

Corollary 3.1 (LC). Suppose I is a definable c.c.c. σ-ideal on 2ω. Then
exactly one of the following holds:

1. There is a Borel set B ⊂ 2ω × 2ω with all vertical sections in I and all
horizontal sections of full Haar measure.

2. There is a condition p ∈ PI such that PI below p is isomorphic to the
random forcing.

Proof. By Fubini’s theorem, two clauses exclude each other. Assume that PI is
not isomorphic to the random algebra below any positive set B. By Theorem 0.1
and Lemma 2.3, we may assume PI is not bounding, so by a result of Shelah
([21]) it adds a Cohen real. Let f : 2ω → 2ω be a Borel function such that
the preimages of meager sets are in I. Fix a Borel set B ⊆ 2ω × 2ω whose
all vertical sections are null and whose complements of horizontal sections are
meager. Then the set D = {(x, y)|(f(x), y) ∈ A} witnesses that I ⊥ null.

We do not know whether Null(φ) ⊥ Null(ψ) whenever φ and ψ are continuous
submeasures at least one of which is pathological.

Shelah [20] defined the notion of commutation for definable c.c.c. σ-ideals
I, J : they commute if for all reals r, s in all generic extensions of V , the state-
ment “r is V [s]-generic for PI and s is V -generic for PJ” is equivalent to “s is
V [r]-generic for PJ and r is V -generic for PI .” (Note that in this situation r is
automatically V -generic for PI , since it avoids all sets in I coded in V .) Shelah
proved that the only ideal commuting with meager is meager itself. Corollary 3.1
can be formulated by saying that the only ideal commuting with null is null
itself. In [20], Problem 11.5, Shelah asked whether the only Suslin forcings that
commute with themselves are cohen and random. (A forcing notion P is suslin
if its underlying set is R and both ≤P and ⊥P are analytic subsets of the plane.
If I is analytic on Gδ, then PI is easily Suslin.) By Theorem 3.3, the answer to
this question restricted to definable forcings of the form PI is positive.

Rec law and Zakrzewski ([18]) say that a pair of ideals I, J has the Fubini
property if for every Borel B ⊆ 2ω × 2ω such that {x|Bx /∈ J} = ∅ we have
{y|By /∈ I} ∈ J . They have proved that in a certain restricted class of ccc
σ-ideals of Borel sets (meager, meager) and (null, null) are the only pairs that
have the Fubini property. They have also found a consistent example (using
a large cardinal assumption) of a ccc σ-ideal I such that both (I, null) and
(I, meager) have the Fubini property, and asked whether there are other ‘nat-
ural’ examples of pairs of ccc ideals with Fubini property. Theorem 3.3 gives a
negative answer to their question restricted to the class of definable ideals.
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In order to give unified treatment of ideals meager and null and the cor-
responding forcing notions Cohen and random, in [14, Definition 1.26] Kunen
introduced the class of ‘reasonable’ ideals. Among other properties, every rea-
sonable ideal is a Fubini ideal ([14, Definition 1.3]) and this implies that (I, I)
has the Fubini property. Therefore by Theorem 3.3, meager and null are the
only reasonable ideals that are analytic on Gδ. The definition of reasonable
also involves being absolute ([14, Definition 1.20]) and under large cardinals
every absolute set of reals belongs to L(R) by [7, Theorem 3.2]. Therefore large
cardinals imply that meager and are are the only reasonable ideals.

If the assumption that I is a Fubini ideal is dropped from the definition of a
reasonable ideal then there are many ideals satisfying the weaker notion ([19]).

Lemma 3.2. Suppose I and J are definable c.c.c. σ-ideals on 2ω. Then the
following are equivalent.

1. PI and PJ commute.

2. If B ⊆ 2ω × 2ω is Borel then {x|Bx /∈ J} /∈ I implies {y|By /∈ I} 6= ∅.

3. Pair J, I has the Fubini property.

Proof. Assume (2) fails and fix a Borel B such that {x|Bx /∈ J} /∈ I and
C = {y|By /∈ I} ∈ J . Let A = B \ 2ω × C, and note that {x|Ax /∈ J} /∈ I and
{y|Ay /∈ I} = ∅. Let x be V -generic for PI so that that Ax /∈ J and let y ∈ Ax

be V [x]-generic for PJ . Since Ay ∈ I and x ∈ Ay, x is not PI -generic over V [y].
Now assume (1) fails, and fix a countable transitive model M of a large

enough fragment of ZFC containing definitions of I and J . Since {x|x is M -
generic for PI} is equal to the complement of the union of all Borel sets coded
in M that belong to I, it is Borel. Similarly, the set

AIJ = {(x, y)|x is M -generic for PI and y is M [x]-generic for PJ}

is Borel, and B = AIJ \ {(x, y)|(y, x) ∈ AJI} is a Borel set consisting of all
pairs (x, y) that fail the commutativity condition. This set is nonempty by our
assumption, and it satisfies (2).

To see that (2) and (3) are equivalent, take the contrapositive of (2).

Theorem 3.3 (LC). Suppose I, J are definable c.c.c. σ-ideals on 2ω. Then
one of the following holds:

1. Both PI and PJ are isomorphic to the Cohen algebra.

2. Both PI and PJ are isomorphic to the Lebesgue measure algebra.

3. PI and PJ do not commute.

In particular, if PI of this kind commutes with itself, then it is isomorphic to
either Cohen or random.

8



By Fubini’s and Kuratowski–Ulam theorems at most one of three statements
holds. The rest of the proof of Theorem 3.3 breaks into several cases according to
whether the posets PI , PJ are bounding or not, with wildly different arguments
in each case.

Lemma 3.4 (LC). Suppose I, J are definable c.c.c. σ-ideals on 2ω such that
both forcings PI and PJ add an unbounded real. Exactly one of the following
holds:

• there are Borel I-positive set B and a Borel J-positive set C such that
both PI below B and PJ below C are isomorphic to the Cohen algebra

• I ⊥ J

Proof. There is nothing really new here. By the Kuratowski–Ulam theorem the
first item implies the failure of I ⊥ J . On the other hand, suppose that the first
item fails. Then one of the partial orders, PI say, is not isomorphic to the Cohen
algebra below any condition. By [20] 9.16 or [27] 6.6, PI 
 2ω ∩V is meager, so
I ⊥ meager and there is a Borel set E ⊂ 2ω × 2ω such that its vertical sections
are meager and the horizontal sections of its complement are I-small. By [21],
1.14, PJ adds a Cohen real over V and so there is a Borel function f : 2ω → 2ω

such that preimages of meager sets are J-small. It is not difficult to verify that
the Borel set D ⊂ 2ω × 2ω defined by 〈x, y〉 ∈ D if and only if 〈x, f(y)〉 ∈ E
witnesses I ⊥ J . The lemma follows.

Lemma 3.5 (LC). Suppose I, J are definable c.c.c. σ-ideals such that both
forcings PI and PJ are bounding. If PI is not equivalent to random, then there
is a Borel B ⊆ 2ω × 2ω such that Bx ∈ J for all x and By /∈ I for all y.

Proof. By Theorem 0.1, both I and J are null ideals for some continuous sub-
measures φ and ψ, respectively. By Lemma 2.1, φ does not have a control
measure. Therefore we are in the situation of Lemma 2.6.

Lemma 3.6 (LC). Suppose that I, J are definable c.c.c. σ-ideals on 2ω such
that PI is bounding while PJ adds an unbounded real. Then I ⊥ J .

Proof. By Theorem 0.1, there is a continuous submeasure φ such that I is
the null ideal for φ. We will first prove that I ⊥ meager. For s ∈ 2n let
[s] = {x ∈ 2ω|x � n = s}.

Claim 3.7. If φ is a continuous submeasure on the Borel algebra of 2ω, then
for every ε > 0 there is mε ∈ N such that φ([s]) ≤ ε for every s ∈ 2mε .

Proof. Assume not, and find sm ∈ 2m such that φ([sm]) ≥ ε for all m. Assume
for a moment there is an infinite set B ⊆ ω such that [sm] (m ∈ B) are pairwise
disjoint. In this case the open sets Un =

⋃
{[sm]|m ≥ n, n ∈ B} have all

submeasure at least ε and they are decreasing with empty intersection. Since φ
is a continuous submeasure, this is impossible.

If there is no such B, by Ramsey’s theorem there is an infinite set D such
that [sm] (m ∈ D) form a decreasing chain. The intersection

⋂
m∈D[sm] is a
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singleton, {x}, and again by the continuity of the submeasure, φ({x}) ≥ ε.
Thus {x} /∈ I, contradiction.

Let f(n) = m2−n as given by Claim 3.7. Interpret the Cohen forcing as
adding a function g ∈

∏
n 2f(n) with finite conditions. Let Dm =

⋃
n>m[g(n)].

It is not difficult to see that V ∩ 2ω ⊂ Dm for every number m ∈ ω and the
submeasures φ(Dm) converge to zero. Therefore

⋂
mDm is a submeasure zero

set containing all the ground model reals.
To show I ⊥ J note that by a result of Shelah [21] the poset PJ adds a

Cohen real. The argument is concluded in a manner similar to Lemma 3.4.

Proof of Theorem 3.3. Let I, J be definable c.c.c. σ-ideals, and suppose that
the first two alternatives in the Theorem fail. Use the c.c.c. to find partitions
2ω = B0 ∪B1 and 2ω = C0 ∪ C1 into Borel sets such that PI below B0 and PJ

below C0 are bounding forcings while the posets PI below B1 and PJ below C1

add an unbounded real. Pick i, j such that Bi /∈ I and Cj /∈ J . If i = j we may
assure that if PI is meager (null, respectively) below Bi then PJ is not meager
(null, respectively) below Cj . In either case, by one of lemmas 3.4, 3.5 or 3.6
we are in the situation of Lemma 3.2.

4 Concluding remarks

Another corollary of Theorem 0.1 precisely determines the extent of ccc-ness of
a weakly distributive definable forcing PI . Recall that a subset F of a poset
P is n-linked if every n-element subset of F has a lower bound, and that P is
σ-n-linked if it can be covered by countably many n-linked sets. An F ⊆ P is
centered if every finite subset of F has a lower bound, and P is σ-centered if it
can be covered by countably many centered subsets. It is well-known that all
these chain conditions are different. Also, by a result of Todorcevic ([25], see
also [3, 3.6.C]), there is a Borel ccc poset that is not σ-2-linked.

Corollary 4.1 (LC). If I is a σ-ideal of Borel sets and PI is weakly distributive,
then the following hold.

1. PI is not σ-centered.

2. If I is moreover definable, then PI is ccc if and only if it is σ-n-linked for
all n.

Proof. Assume B is σ-centered and fix centered sets Xn maximal under the
inclusion whose union covers B. Since by Fact 1.1 every positive set has a
compact subset the intersection of each Xn is a singleton. This implies that a
co-countable set belongs to I, a contradiction.

For 2, by Theorem 0.1 it suffices to prove a well-known fact that if φ is a
continuous submeasure on Borel algebra of 2ω and Null(φ) contains all count-
able sets, then the quotient algebra is σ-n-linked for all n (this is [5, Exercise
393Y(a)]). Recall first that it is completely generated by its countable subalge-
bra B0 given by the name for the PI -generic real. Now consider the metric on B
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defined by ρ(A,B) = φ(A∆B). It is not difficult to check that (B, ρ) is a com-
plete metric space, and as an easy consequence of [5, 393B (c)], it is isomorphic
to the completion of (B0, ρ), and in particular separable. For A ∈ B0 the set

FA = {C|ρ(A,C) < ρ(0B, A)/n}.

is n-linked, and
⋃

A∈B0
FA covers B.

We conclude with a question asked by Solecki (personal communication).

Question 4.2. Are the following equivalent for every c.c.c. σ-ideal I on Borel
subsets of 2ω that is analytic on Gδ?

1. Compact sets are dense in PI and I is ccc.

2. I is the null ideal of some continuous submeasure.

If the answer is positive, this would strengthen Theorem 0.1 and nicely com-
plement a result of [13] where it was proved that every ccc σ-ideal σ-generated
by compact sets is Borel-isomorphic to meager.
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