Distribution of values of L-functions at the edge of the critical strip

Youness Lamzouri

Institute for Advanced Study, Princeton

October 24th, 2009
Values of L-functions at the edge of the critical strip encode deep arithmetic information.
Values of L-functions at the edge of the critical strip encode deep arithmetic information.

- $\zeta(1 + it) \neq 0 \iff$ Prime Number Theorem.
Values of L-functions at the edge of the critical strip encode deep arithmetic information.

- $\zeta(1 + it) \neq 0 \iff$ Prime Number Theorem.
- $L(1, \chi_d)$ is connected to $h(d)$ via the Class Number Formula.
Values of L-functions at the edge of the critical strip encode deep arithmetic information.

- $\zeta(1 + it) \neq 0 \iff$ Prime Number Theorem.
- $L(1, \chi_d)$ is connected to $h(d)$ via the Class Number Formula.

Serre’s Theorem (1968)

Let $S_k^p(N)$ be the set of normalized primitive holomorphic cusp forms of level N and weight k. For $f \in S_k^p(N)$, we have

The Sato Tate conjecture holds for $f \iff L(1 + it, \text{Sym}^m f) \neq 0$, for all $m \in \mathbb{N}$.
The distribution of these values has been extensively studied over the last decades.

Erdös and Chowla (50’s), Elliott (70’s)

Let $\tau > 0$. The proportion of fundamental discriminants $|d| \leq x$ with $L(1, \chi_d) \geq \tau$, approaches a continuous limit $F(\tau)$ as $x \to \infty$.

Montgomery-Vaughan (1999) Conjectured the shape of the tail of this distribution function as $\tau, x \to \infty$ in the full range $\tau \leq (e^\gamma + o(1)) \log \log x$, and noted that it should decay “double exponentially”.

Granville-Soundararajan (2003) Proved this conjecture and got a precise estimate for the tail of this distribution function. Moreover they proved analogous results for the families $|\zeta(1 + it)|$ for $t \in [T, 2T]$ and $|L(1, \chi)|$ where χ runs over primitive characters modulo a large prime q.
The distribution of these values has been extensively studied over the last decades.

Erdös and Chowla (50’s), Elliott (70’s)

Let $\tau > 0$. The proportion of fundamental discriminants $|d| \leq x$ with $L(1, \chi_d) \geq \tau$, approaches a continuous limit $F(\tau)$ as $x \to \infty$.

Montgomery-Vaughan (1999)

Conjectured the shape of the tail of this distribution function as $\tau, x \to \infty$ in the full range $\tau \leq (e^\gamma + o(1)) \log \log x$, and noted that it should decay “double exponentially”.

Granville-Soundararajan (2003) Proved this conjecture and got a precise estimate for the tail of this distribution function. Moreover they proved analogous results for the families $|\zeta(1 + it)|$ for $t \in [T, 2T]$ and $|L(1, \chi)|$ where χ runs over primitive characters modulo a large prime.
The distribution of these values has been extensively studied over the last decades.

Erdös and Chowla (50’s), Elliott (70’s)

Let $\tau > 0$. The proportion of fundamental discriminants $|d| \leq x$ with $L(1, \chi_d) \geq \tau$, approaches a continuous limit $F(\tau)$ as $x \to \infty$.

Montgomery-Vaughan (1999)

Conjectured the shape of the tail of this distribution function as $\tau, x \to \infty$ in the full range $\tau \leq (e^\gamma + o(1)) \log \log x$, and noted that it should decay “double exponentially”.

Granville-Soundararajan (2003)

Proved this conjecture and got a precise estimate for the tail of this distribution function. Moreover they proved analogous results for the families $|\zeta(1 + it)|$ for $t \in [T, 2T]$ and $|L(1, \chi)|$ where χ runs over primitive characters modulo a large prime q.
The distribution of other Families

- Cogdell and Michel (2004).
 Computed large complex moments of $L(1, \text{Sym}^m f)$ for $f \in S^p_2(q)$, in the level aspect. (Unconditionally for $m = 1, 2, 3, 4$ and assuming the automorphy of these L-functions for $m \geq 5$).
The distribution of other Families

- Cogdell and Michel (2004).
 Computed large complex moments of $L(1, \text{Sym}^m f)$ for $f \in S_2^p(q)$, in the level aspect. (Unconditionally for $m = 1, 2, 3, 4$ and assuming the automorphy of these L-functions for $m \geq 5$).

 Family of $L(1, f)$ for $f \in S_k^p(1)$, in the weight aspect.
The distribution of other Families

- Cogdell and Michel (2004).
 Computed large complex moments of $L(1, \text{Sym}^m f)$ for $f \in S_2^p(q)$, in the level aspect. (Unconditionally for $m = 1, 2, 3, 4$ and assuming the automorphy of these L-functions for $m \geq 5$).

 Family of $L(1, f)$ for $f \in S_k^p(1)$, in the weight aspect.

 The distribution function of complex values of $\zeta(1 + it)$, that is the joint distribution function of $\arg \zeta(1 + it)$ and $|\zeta(1 + it)|$.
Consider a family of L-functions $\mathcal{L} = \{L(s, \pi) : \pi \in \mathcal{F}\}$. Where \mathcal{F} is the set of some interesting arithmetic objects π.

$$L(1, \pi) = \prod_{p} \prod_{j=1}^{d} \left(1 - \frac{\alpha_{j, \pi}(p)}{p}\right)^{-1}.$$
Consider a family of L-functions $\mathcal{L} = \{L(s, \pi) : \pi \in \mathcal{F}\}$. Where \mathcal{F} is the set of some interesting arithmetic objects π.

$$L(1, \pi) = \prod_{p} \prod_{j=1}^{d} \left(1 - \frac{\alpha_{j, \pi}(p)}{p} \right)^{-1}.$$

As π varies in \mathcal{F} and the conductor of \mathcal{F} tends to ∞, we expect that $\alpha_{j, \pi}(p)$ should be distributed like some random variables $X_j(p)$.
For \(\zeta(1 + it) \): as \(t \to \infty \) the values \(p^{it} \) are expected to be distributed like random variables \(X(p) \) uniformly distributed on the unit circle \(\mathbb{U} \).
For \(\zeta(1 + it) \): as \(t \to \infty \) the values \(p^{it} \) are expected to be distributed like random variables \(X(p) \) uniformly distributed on the unit circle \(\mathbb{U} \).

For \(L(1, \chi_d) \): as \(d \to \infty \) the values \(\chi_d(p) \) are expected to be distributed like random variables \(X(p) \) which take values \(-1 \) and \(1 \) with equal probabilities.

For \(L(1, f) \): the local roots are expected to be distributed like random variables \(X_1(p) = X_2(p) = e^{i \theta(p)} \) where \(\theta(p) \) are distributed in \([0, \pi]\) according to the Sato-Tate measure \(\frac{2}{\pi} \sin^2(\theta) \, d\theta \).
For $\zeta(1 + it)$: as $t \to \infty$ the values p^{it} are expected to be distributed like random variables $X(p)$ uniformly distributed on the unit circle \mathbb{U}.

For $L(1, \chi_d)$: as $d \to \infty$ the values $\chi_d(p)$ are expected to be distributed like random variables $X(p)$ which take values -1 and 1 with equal probabilities.

For $L(1, f)$: the local roots are expected to be distributed like random variables $X_1(p) = X_2(p) = e^{i\theta(p)}$ where $\theta(p)$ are distributed in $[0, \pi]$ according to the Sato-Tate measure $\frac{2}{\pi} \sin^2(\theta) d\theta$.

Construct a random model

\[L_{\mathcal{F}}(1, X) = \prod_{p} \prod_{j=1}^{d} \left(1 - \frac{X_j(p)}{p} \right)^{-1}. \]

- \(X_j(p) \) are random variables having the expected distribution.
- \(X_j(p) \) and \(X_j(q) \) are independent for \(p \neq q \).
Construct a random model

\[L_{\mathcal{F}}(1, X) = \prod_{p} \prod_{j=1}^{d} \left(1 - \frac{X_j(p)}{p} \right)^{-1}. \]

- \(X_j(p) \) are random variables having the expected distribution.
- \(X_j(p) \) and \(X_j(q) \) are independent for \(p \neq q \).

Guess

\[\frac{1}{|\mathcal{F}|} \sum_{\pi \in \mathcal{F}} |L(1, \pi)|^k \approx \mathbb{E} \left(|L_{\mathcal{F}}(1, X)|^k \right). \]
Construct a random model

\[L_{\mathcal{F}}(1, X) = \prod_{p} \prod_{j=1}^{d} \left(1 - \frac{X_j(p)}{p}\right)^{-1}. \]

- \(X_j(p) \) are random variables having the expected distribution.
- \(X_j(p) \) and \(X_j(q) \) are independent for \(p \neq q \).

Guess

\[
\frac{1}{|\mathcal{F}|} \sum_{\pi \in \mathcal{F}} |L(1, \pi)|^k \approx \mathbb{E} \left(|L_{\mathcal{F}}(1, X)|^k \right).
\]

A careful study of the random model

\[\downarrow\]

Information of the distribution of the “L-values”.
Let

$$\Phi_T(\tau) := \frac{1}{T} \text{meas}\{ t \in [T, 2T] : |\zeta(1 + it)| \geq e^{\gamma} \tau \}.$$
Let
\[\Phi_T(\tau) := \frac{1}{T} \text{meas}\{ t \in [T, 2T] : |\zeta(1 + it)| \geq e^{\gamma \tau} \} \].

Uniformly for \(\tau \leq \log \log T - 20 \) we have

\[\Phi_T(\tau) = \exp \left(-\frac{e^{\tau - A_1}}{\tau} (1 + o(1)) \right), \] (1)

where \(A_1 = 1 + \int_0^1 \log l_0(t) \frac{dt}{t^2} + \int_1^{\infty} (\log l_0(t) - t) \frac{dt}{t^2} \).
Let
\[\Phi_T(\tau) := \frac{1}{T} \text{meas}\{ t \in [T, 2T] : |\zeta(1 + it)| \geq e^{\gamma \tau} \}. \]

Uniformly for \(\tau \leq \log \log T - 20 \) we have
\[\Phi_T(\tau) = \exp \left(-\frac{e^{\tau - A_1}}{\tau} (1 + o(1)) \right), \tag{1} \]
where \(A_1 = 1 + \int_0^1 \log I_0(t) \frac{dt}{t^2} + \int_1^\infty (\log I_0(t) - t) \frac{dt}{t^2} \).

- The proportion of fundamental discriminants \(d \) with \(|d| \leq x \), for which \(L(1, \chi_d) > e^{\gamma \tau} \), has the same formula as (1) with \(A_2 = 1 + \int_0^1 \log \cosh t \frac{dt}{t^2} + \int_1^\infty (\log \cosh t - t) \frac{dt}{t^2} \).
- The proportion of \(f \) in \(S^p_k(1) \) for which \(L(1, f) > (e^{\gamma \tau})^2 \) has the same formula as (1), with some other constant \(A_3 \).
Study a large class of random models which includes all the previous ones. As an application we get an estimate for the distribution of the values $L(1, \text{Sym}^mf)$ where f varies over elements of $S^p_2(q)$ as $q \to \infty$. (Using Cogdell-Michel result).

Study the distribution of “general” L-functions in the height aspect on the line $\text{Re}(s) = 1$.

Study the distribution of $L(\pi \otimes \chi_d, 1)$, for fundamental discriminants $|d| \leq x$, where π is an automorphic cuspidal representation of $GL_n(\mathbb{A}_\mathbb{Q})$, as $x \to \infty$.
Let $\theta_j(p)$ be random variables distributed on $[-\pi, \pi]$, and consider

$$L(1, X) := \prod_p \prod_{j=1}^{d} \left(1 - \frac{e^{i\theta_j(p)}}{p} \right)^{-1}.$$
Let $\theta_j(p)$ be random variables distributed on $[-\pi, \pi]$, and consider

$$L(1, X) := \prod_{p} \prod_{j=1}^{d} \left(1 - \frac{e^{i\theta_j(p)}}{p} \right)^{-1}.$$

Condition 1. $\mathbb{E}(e^{i\theta_j(p)}) = 0$, for all primes p and $1 \leq j \leq d$.
Let $\theta_j(p)$ be random variables distributed on $[-\pi, \pi]$, and consider

$$L(1, X) := \prod_{p} \prod_{j=1}^{d} \left(1 - \frac{e^{i\theta_j(p)}}{p} \right)^{-1}.$$

Condition 1. $\mathbb{E}(e^{i\theta_j(p)}) = 0$, for all primes p and $1 \leq j \leq d$.

Condition 2. $\theta_j(p)$ and $\theta_k(q)$ are independent random variables for $p \neq q$.
Let \(\theta_j(p) \) be random variables distributed on \([-\pi, \pi]\), and consider

\[
L(1, X) := \prod_p \prod_{j=1}^d \left(1 - \frac{e^{i\theta_j(p)}}{p} \right)^{-1}.
\]

- **Condition 1.** \(\mathbb{E}(e^{i\theta_j(p)}) = 0 \), for all primes \(p \) and \(1 \leq j \leq d \).
- **Condition 2.** \(\theta_j(p) \) and \(\theta_k(q) \) are independent random variables for \(p \neq q \).
- **Condition 3.** The random variables \(X(p) := \sum_{j=1}^d e^{i\theta_j(p)}/d \), are identically distributed, for every prime \(p \).
Let $\theta_j(p)$ be random variables distributed on $[-\pi, \pi]$, and consider

$$L(1, X) := \prod_p \prod_{j=1}^d \left(1 - \frac{e^{i\theta_j(p)}}{p} \right)^{-1}.$$

Condition 1. $\mathbb{E}(e^{i\theta_j(p)}) = 0$, for all primes p and $1 \leq j \leq d$.

Condition 2. $\theta_j(p)$ and $\theta_k(q)$ are independent random variables for $p \neq q$.

Condition 3. The random variables $X(p) := \sum_{j=1}^d e^{i\theta_j(p)}/d$, are identically distributed, for every prime p.

Condition 4. There exists an absolute constant $\alpha > 0$ such that for all primes p and all $\epsilon > 0$, we have

$$\text{Prob} \left(|\theta_1(p)| \leq \epsilon, \ldots, |\theta_d(p)| \leq \epsilon \right) \gg \epsilon^\alpha.$$
Let

$$\Phi(\tau) := \text{Prob} \left(|L(1, X)| > (e^\gamma \tau)^d \right).$$
Let
\[\Phi(\tau) \coloneqq \text{Prob} \left(|L(1, X)| > (e^{\gamma \tau})^d \right). \]

Theorem 1 (L-2009)

Let \(d \) be a positive integer. For \(1 \leq j \leq d \) and prime \(p \) let \(\theta_j(p) \) be random variables distributed on \([-\pi, \pi]\) and satisfying conditions 1-4. Then for large \(\tau \), we have

\[\Phi(\tau) = \exp \left(-\frac{e^{\tau-A_X}}{\tau} (1 + o(1)) \right), \]

where

\[A_X \coloneqq 1 + \int_0^1 h_X(t) \frac{dt}{t^2} + \int_1^\infty (h_X(t) - t) \frac{dt}{t^2}, \]

and \(h_X(t) = \log \mathbb{E} \left(e^{\text{Re}(X)t} \right) \), where \(X \) is a random variable having the same distribution as the \(X(p) \).
$S_2^p(q)$ is the set of normalized primitive holomorphic cusp forms of weight 2 and level q (q is large prime).

Assume that the k-th symmetric power L-function of $f \in S_2^p(q)$ is automorphic (hypothesis $\text{Sym}(q)$). This is true for the symmetric powers up to 4.

Let $\omega_f := 1/(4\pi \|f\|)$ be the usual harmonic weight.
Let

\[\Phi_q(\text{Sym}^k, \tau) = \left(\sum_{f \in S_2^p(q)} \omega_f \right)^{-1} \sum_{f \in S_2^p(q)} \omega_f. \]

where \(L(1, \text{Sym}^k f) \geq (e^\gamma \tau)^{k+1} \).
Let
\[
\Phi_q(\text{Sym}^k, \tau) = \left(\sum_{f \in S_2^p(q)} \omega_f \right)^{-1} \sum_{f \in S_2^p(q)} \omega_f.
\]

Theorem 2 (L-2009)

Let \(k \geq 1 \) be an integer and \(q \) be a large prime such that Hypothesis \(\text{Sym}(q) \) holds. Then uniformly in the region \(\tau \leq \log \log q(1 + o(1)) \) we have

\[
\Phi_q(\text{Sym}^k, \tau) = \exp \left(- \frac{e^{\tau - A_k}}{\tau} (1 + o(1)) \right),
\]

where \(A_k = 1 + \int_0^1 \frac{h_k(t)}{t^2} dt + \int_1^\infty \frac{h_k(t) - t}{t^2} dt \) and

\[
h_k(t) = \log \left(\frac{2}{\pi} \int_0^\pi \exp \left(\frac{t}{k + 1} \sum_{j=0}^k \cos(\theta(k - 2j)) \right) \sin^2 \theta d\theta \right).
\]
Let S^p be the class of Dirichlet series

$$F(s) = \sum_{n=1}^{\infty} \frac{a_F(n)}{n^s}, \text{ for } \text{Re}(s) > 1,$$

satisfying the following properties
Let S^p be the class of Dirichlet series

$$F(s) = \sum_{n=1}^{\infty} \frac{a_F(n)}{n^s}, \text{ for } \text{Re}(s) > 1,$$

satisfying the following properties

1. Analyticity: $(s - 1)^r F(s)$ is an entire function of finite order for some non-negative integer r.

2. Ramanujan hypothesis: $a_F(n) \ll \epsilon n^\epsilon$ for any fixed $\epsilon > 0$.

3. Functional equation: $F(s)$ satisfies the functional equation

$$\Phi(s) = \omega \Phi(1-s),$$

where $\Phi(s) = Q s^F k \prod_{i=1} \Gamma(w_i s + \mu_i) F(s)$, $|\omega| = 1$, $Q_F > 0$, $w_i > 0$ and $\text{Re}(\mu_i) \geq 0$ are parameters depending on F.
Let S^p be the class of Dirichlet series

$$F(s) = \sum_{n=1}^{\infty} \frac{a_F(n)}{n^s}, \text{ for } \operatorname{Re}(s) > 1,$$

satisfying the following properties

1. Analyticity: $(s - 1)^r F(s)$ is an entire function of finite order for some non-negative integer r.
2. Ramanujan hypothesis: $a_F(n) \ll \varepsilon n^\varepsilon$ for any fixed $\varepsilon > 0$.

Let S^p be the class of Dirichlet series

$$F(s) = \sum_{n=1}^{\infty} \frac{a_F(n)}{n^s}, \text{ for } \Re(s) > 1,$$

satisfying the following properties

1. Analyticity: $(s - 1)^r F(s)$ is an entire function of finite order for some non-negative integer r.
2. Ramanujan hypothesis: $a_F(n) \ll \varepsilon n^\varepsilon$ for any fixed $\varepsilon > 0$.
3. Functional equation: F satisfies the functional equation

$$\Phi(s) = \omega \Phi(1 - \overline{s}),$$

where

$$\Phi(s) = Q_F^s \prod_{i=1}^{k} \Gamma(w_i s + \mu_i) F(s),$$

and $|\omega| = 1$, $Q_F > 0$, $w_i > 0$ and $\Re(\mu_i) \geq 0$ are parameters depending on F.
4. Euler product: for $\text{Re}(s) > 1$ we have

$$F(s) = \prod_{p} \prod_{i=1}^{d} \left(1 - \frac{\alpha_{i,F}(p)}{p^s} \right)^{-1},$$

where $\alpha_{i,F}(p) \neq 0$ for all primes except finitely many. The $\alpha_{i,F}(p)$ are complex numbers called the local roots of F at p and $d \in \mathbb{N}$ is called the degree of F.
4. Euler product: for $\text{Re}(s) > 1$ we have

$$F(s) = \prod_p \prod_{i=1}^d \left(1 - \frac{\alpha_{i,F(p)}}{p^s} \right)^{-1},$$

where $\alpha_{i,F(p)} \neq 0$ for all primes except finitely many. The $\alpha_{i,F(p)}$ are complex numbers called the local roots of F at p and $d \in \mathbb{N}$ is called the degree of F.

To study the distribution of the values $F(1 + it)$ we define

The random model

Let $\{X(p)\}_{p \text{ primes}}$ are independent random variables uniformly distributed on the unit circle \mathbb{U}, and define

$$F(1, X) = \prod_p \prod_{i=1}^d \left(1 - \frac{\alpha_{i,F(p)}X(p)}{p} \right)^{-1}.$$
Theorem 3 (L-2009)

Let $F \in S^p$. Let $T > 0$ be large, and take $A > 0$. Then for all positive integers k in the range $1 \leq k \leq \log T/(B(\log \log T)^2)$ (for a suitably large constant $B = B(A, F)$), we have

$$
\frac{1}{T} \int_T^{2T} |F(1+it)|^{2k} \, dt = \mathbb{E} \left(|F(1, X)|^{2k} \right) \left(1 + O \left(\frac{1}{\log^A T} \right) \right).
$$

Remark 1.

This result is true (though in a slightly smaller range) in the more general case where the Ramanujan Hypothesis is replaced by the following Ramanujan Petersson bound on average

$$
\sum_{n \leq x} |a_n F(n)| \ll x \left(\log x \right)^\beta F,
$$

provided some zero density estimate near $\Re(s) = 1$ holds for F. In particular these assumptions are true for L-functions attached to $GL(2)$-Maass cusp forms.
Theorem 3 (L-2009)

Let $F \in S^p$. Let $T > 0$ be large, and take $A > 0$. Then for all positive integers k in the range $1 \leq k \leq \log \frac{T}{(B(\log \log T)^2)}$ (for a suitably large constant $B = B(A, F)$), we have

$$\frac{1}{T} \int_{T}^{2T} |F(1 + it)|^{2k} dt = \mathbb{E} \left(|F(1, X)|^{2k} \right) \left(1 + O \left(\frac{1}{\log^A T} \right) \right).$$

Remark 1. This result is true (though in a slightly smaller range) in the more general case where the Ramanujan Hypothesis is replaced by the following Ramanujan Petersson bound on average

$$\sum_{n \leq x} |a_F(n)| \ll x (\log x)^{\beta_F},$$

provided some zero density estimate near $\text{Re}(s) = 1$ holds for F.
Theorem 3 (L-2009)

Let \(F \in S^p \). Let \(T > 0 \) be large, and take \(A > 0 \). Then for all positive integers \(k \) in the range \(1 \leq k \leq \log T/(B(\log \log T)^2) \) (for a suitably large constant \(B = B(A, F) \)), we have

\[
\frac{1}{T} \int_T^{2T} |F(1 + it)|^{2k} \, dt = \mathbb{E} \left(|F(1, X)|^{2k} \right) \left(1 + O \left(\frac{1}{\log^A T} \right) \right).
\]

Remark 1. This result is true (though in a slightly smaller range) in the more general case where the Ramanujan Hypothesis is replaced by the following Ramanujan Petersson bound on average

\[
\sum_{n \leq x} |a_F(n)| \ll x(\log x)^{\beta_F},
\]

provided some zero density estimate near \(\text{Re}(s) = 1 \) holds for \(F \). In particular these assumptions are true for \(L \)-functions attached to \(GL(2) \)-Maass cusp forms.
Large values of $|F(1 + it)|$

Conjecture 1
Let $F \in S_p$. Then there exists some constant $\kappa_F > 0$ such that
$$\sum_{p \leq x} |a_F(p)|^p \asymp \kappa_F \log \log x + O(1).$$

Corollary 1
Let $F \in S_p$ such that Conjecture 1 holds for F. Then for $T > 0$ large, there exists some $t \in [T, 2T]$ such that
$$|F(1 + it)| \gg (\log \log T)^{\kappa_F}.$$

Remark 2.
The bound provided by Corollary 1 is best possible (up to a constant). Indeed by a standard argument of Littlewood we can show, under the Generalized Riemann Hypothesis for F,$$|F(1 + it)| \ll (\log \log t)^{\kappa_F}.$$
Conjecture 1

Let \(F \in S^p \). Then there exists some constant \(\kappa_F > 0 \) such that

\[
\sum_{p \leq x} \frac{|a_F(p)|}{p} = \kappa_F \log \log x + O(1).
\]
Conjecture 1
Let $F \in S^p$. Then there exists some constant $\kappa_F > 0$ such that

$$\sum_{p \leq x} \frac{|a_F(p)|}{p} = \kappa_F \log \log x + O(1).$$

Corollary 1
Let $F \in S^p$ such that Conjecture 1 holds for F. Then for $T > 0$ large, there exists some $t \in [T, 2T]$ such that

$$|F(1 + it)| \gg (\log \log T)^{\kappa_F}.$$
Conjecture 1
Let $F \in S^p$. Then there exists some constant $\kappa_F > 0$ such that
\[
\sum_{p \leq x} \frac{|a_F(p)|}{p} = \kappa_F \log \log x + O(1).
\]

Corollary 1
Let $F \in S^p$ such that Conjecture 1 holds for F. Then for $T > 0$ large, there exists some $t \in [T, 2T]$ such that
\[
|F(1 + it)| \gg (\log \log T)^{\kappa_F}.
\]

Remark 2. The bound provided by Corollary 1 is best possible (up to a constant). Indeed by a standard argument of Littlewood we can show, under the Generalized Riemann Hypothesis for F
\[
|F(1 + it)| \ll (\log \log t)^{\kappa_F}.
\]
A precise formula for the distribution of $|F(1 + it)|$

In general the values $a F(p)$ are expected to have some distribution as $p \to \infty$.

Hypothesis D

There exists a compactly supported distribution function $\psi(t)$ (with support in some interval $[0, U]$), such that for all continuous functions g we have

$$\sum_{p \leq x} g(|a F(p)|) = \pi(x) \left(\int_{U} g(t) \psi(t) \, dt + o(1 \log x) \right),$$

as $x \to \infty$.

Let $F \in S$ and satisfies hypothesis D. Let $N := \int_{U} t \psi(t) \, dt$.

Then Conjecture 1 holds for F with $\kappa_F = N$. Define

$$b_F := \prod_{p \max_{t \in [-\pi, \pi]} |d \prod_{i=1}^{p}(1 - e^{it\alpha_i}, F(p)) - 1|}.$$
In general the values $a_F(p)$ are expected to have some distribution as $p \to \infty$.
A precise formula for the distribution of $|F(1 + it)|$

In general the values $a_F(p)$ are expected to have some distribution as $p \to \infty$.

Hypothesis D

There exists a compactly supported distribution function $\psi(t)$ (with support in some interval $[0, U]$), such that for all continuous functions g we have

$$\sum_{p \leq x} g(|a_F(p)|) = \pi(x) \left(\int_0^U g(t)\psi(t)dt + o\left(\frac{1}{\log x}\right) \right), \text{ as } x \to \infty.$$
A precise formula for the distribution of $|F(1 + it)|$

In general the values $a_F(p)$ are expected to have some distribution as $p \to \infty$.

Hypothesis D

There exists a compactly supported distribution function $\psi(t)$ (with support in some interval $[0, U]$), such that for all continuous functions g we have

$$\sum_{p \leq x} g(|a_F(p)|) = \pi(x) \left(\int_0^U g(t)\psi(t)dt + o\left(\frac{1}{\log x}\right) \right), \text{ as } x \to \infty.$$

Let $F \in S^p$ and satisfies hypothesis D. Let $N := \int_0^U t\psi(t)dt$. Then Conjecture 1 holds for F with $\kappa_F = N$. Define
A precise formula for the distribution of $|F(1 + it)|$

In general the values $a_F(p)$ are expected to have some distribution as $p \to \infty$.

Hypothesis D

There exists a compactly supported distribution function $\psi(t)$ (with support in some interval $[0, U]$), such that for all continuous functions g we have

$$
\sum_{p \leq x} g(|a_F(p)|) = \pi(x) \left(\int_0^U g(t)\psi(t)dt + o \left(\frac{1}{\log x} \right) \right), \text{ as } x \to \infty.
$$

Let $F \in S^p$ and satisfies hypothesis D. Let $N := \int_0^U t\psi(t)dt$. Then Conjecture 1 holds for F with $\kappa_F = N$. Define

$$b_F := \prod_p \max_{t \in [-\pi, \pi]} \left| \prod_{i=1}^d \left(1 - \frac{e^{it\alpha_i, F(p)}}{p} \right)^{-1} \right| \left(1 - \frac{1}{p} \right)^N.$$
A precise formula for the distribution of $|F(1 + it)|$

In general the values $a_F(p)$ are expected to have some distribution as $p \to \infty$.

Hypothesis D

There exists a compactly supported distribution function $\psi(t)$ (with support in some interval $[0, U]$), such that for all continuous functions g we have

$$\sum_{p \leq x} g(|a_F(p)|) = \pi(x) \left(\int_0^U g(t)\psi(t)dt + o\left(\frac{1}{\log x}\right) \right), \text{ as } x \to \infty.$$

Let $F \in S^p$ and satisfies hypothesis D. Let $N := \int_0^U t\psi(t)dt$. Then Conjecture 1 holds for F with $\kappa_F = N$. Define

$$b_F := \prod_p \max_{t \in [-\pi, \pi]} \left| \prod_{i=1}^d \left(1 - \frac{e^{it\alpha_i}F(p)}{p} \right)^{-1} \right| \left(1 - \frac{1}{p} \right)^N.$$
Let

\[\Phi_F(\tau) := \frac{1}{T} \text{meas}\{ t \in [T, 2T] : |F(1 + it)| > b_F (e^{\gamma \tau})^N \}. \]
Let
\[\Phi_F(\tau) := \frac{1}{T} \text{meas}\{t \in [T, 2T]: \quad |F(1 + it)| > b_F (e^{\gamma \tau})^N\}. \]

Theorem 4 (L-2009)

Let \(T > 0 \) be large. Let \(F \in S^p \), and satisfies Hypothesis D (with distribution function \(\psi \)). Then uniformly in the region \(\tau \leq \log_2 T - \log_3 T - 2 \log_4 T \), we have

\[\Phi_F(\tau) = \exp \left(- \frac{e^{\tau - A_1 - \frac{M}{N} + \log N}}{\tau} (1 + o(1)) \right), \]

where \(M := \int_0^U t \log t \psi(t) dt \).
Let
\[\Phi_F(\tau) := \frac{1}{T} \text{meas}\{ t \in [T, 2T] : |F(1+it)| > b_F(e^{\gamma \tau})^N \}. \]

Theorem 4 (L-2009)

Let \(T > 0 \) be large. Let \(F \in S^p \), and satisfies Hypothesis D (with distribution function \(\psi \)). Then uniformly in the region \(\tau \leq \log_2 T - \log_3 T - 2 \log_4 T \), we have

\[\Phi_F(\tau) = \exp \left(-\frac{e^{\tau-A_1-M/N+\log N}}{\tau} (1 + o(1)) \right), \]

where \(M := \int_0^U t \log t \psi(t) dt \).

- \(M/N - \log N = 0 \) for degree one \(L \)-functions.
- \(M/N - \log N \neq 0 \) for \(L \)-functions attached to \(GL(2) \)-automorphic forms by the Sato-Tate conjecture.