The Heat Equation for the Hermite Operator on the Heisenberg Group

M. W. Wong

Department of Mathematics and Statistics
York University
4700 Keele Street
Toronto, Ontario M3J 1P3
Canada

Abstract

We give a formula for the one-parameter strongly continuous semigroup e^{-tL}, $t > 0$, generated by the Hermite operator L on the Heisenberg group \mathbb{H}^1 in terms of Weyl transforms, and use it to obtain an L^2 estimate for the solution of the initial value problem for the heat equation governed by L in terms of the L^p norm of the initial data for $1 \leq p \leq \infty$.

This research has been partially supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) OGP0008562.

*2000 Mathematics Subject Classification: 35K05, 47G30
†Key words and phrases: Hermite functions, Heisenberg groups, Hermite operators, Wigner transforms, Weyl transforms, Hermite semigroups, heat equations, Weyl-Heisenberg groups, localization operators, L^p–L^2 estimates
1 The Hermite Semigroup on \mathbb{R}

As a prologue to the Hermite semigroup on the Heisenberg group \mathbb{H}^1, we give an analysis of the Hermite semigroup on \mathbb{R}.

For $k = 0, 1, 2, \ldots$, the Hermite function of order k is the function e_k on \mathbb{R} defined by

$$e_k(x) = \frac{1}{(2^k k! \sqrt{\pi})^{1/2}} e^{-x^2/2} H_k(x), \quad x \in \mathbb{R},$$

where H_k is the Hermite polynomial of degree k given by

$$H_k(x) = (-1)^k e^{x^2} \left(\frac{d}{dx} \right)^k (e^{-x^2}), \quad x \in \mathbb{R}.$$

It is well-known that $\{e_k : k = 0, 1, 2, \ldots\}$ is an orthonormal basis for $L^2(\mathbb{R})$.

Let A and \overline{A} be differential operators on \mathbb{R} defined by

$$A = \frac{d}{dx} + x$$

and

$$\overline{A} = -\frac{d}{dx} + x.$$

In fact, \overline{A} is the formal adjoint of A. The Hermite operator H is the ordinary differential operator on \mathbb{R} given by

$$H = -\frac{1}{2}(AA + \overline{A}A).$$

A simple calculation shows that

$$H = -\frac{d^2}{dx^2} + x^2.$$

The spectral analysis of the Hermite operator H is based on the following result, which is easy to prove.

Theorem 1.1 For all x in \mathbb{R},

$$(Ae_k)(x) = 2k e_{k-1}(x), \quad k = 1, 2, \ldots,$$

and

$$(\overline{A}e_k)(x) = e_{k+1}(x), \quad k = 0, 1, 2, \ldots.$$
Remark 1.2 In view of Theorem 1.1, we call A and \overline{A} the annihilation operator and the creation operator, respectively, for the Hermite functions e_k, $k = 0, 1, 2, \ldots$, on \mathbb{R}.

An immediate consequence of Theorem 1.1 is the following theorem.

Theorem 1.3 $He_k = (2k + 1)e_k$, $k = 0, 1, 2, \ldots$.

Remark 1.4 Theorem 1.3 says that for $k = 0, 1, 2, \ldots$, the number $2k + 1$ is an eigenvalue of the Hermite operator H, and the Hermite function e_k on \mathbb{R} is an eigenfunction of H corresponding to the eigenvalue $2k + 1$.

We can now give a formula for the Hermite semigroup e^{-tH}, $t > 0$.

Theorem 1.5 Let f be a function in the Schwartz space $S(\mathbb{R})$. Then for $t > 0$,

$$e^{-tH}f = \sum_{k=0}^{\infty} e^{-k(2k+1)t} (f, e_k) e_k,$$

where the convergence is uniform and absolute on \mathbb{R}.

Theorem 1.6 For $t > 0$, the Hermite semigroup e^{-tH}, initially defined on $S(\mathbb{R})$, can be extended to a unique bounded linear operator from $L^p(\mathbb{R})$ into $L^2(\mathbb{R})$, which we again denote by e^{-tH}, and there exists a positive constant C such that

$$\|e^{-tH}f\|_{L^2(\mathbb{R})} \leq C^2 \frac{1}{2 \sinh t} \|f\|_{L^p(\mathbb{R})}$$

for all f in $L^p(\mathbb{R})$, $1 \leq p \leq 2$.

Remark 1.7 In fact, by a well-known asymptotic formula for Hermite functions,

$$\sup \{ \|e_k\|_{L^\infty(\mathbb{R})} : k = 0, 1, 2, \ldots \} < \infty$$

and hence C can be any positive constant such that

$$C \geq \sup \{ \|e_k\|_{L^\infty(\mathbb{R})} : k = 0, 1, 2, \ldots \}.$$
Proof of Theorem 1.6 Let $f \in \mathcal{S}(\mathbb{R})$. Then, by Theorem 1.5 and Minkowski’s inequality,

$$\|e^{-tH}f\|_{L^2(\mathbb{R})} \leq \sum_{k=0}^{\infty} e^{-(2k+1)t} |(f,e_k)|. \quad (1.1)$$

Now, for $k = 0, 1, 2, \ldots$, by Schwarz’ inequality,

$$|(f,e_k)| \leq \|f\|_{L^2(\mathbb{R})} \quad (1.2)$$

and

$$|(f,e_k)| \leq \|f\|_{L^1(\mathbb{R})}\|e_k\|_{L^\infty(\mathbb{R})}. \quad (1.3)$$

But, using an asymptotic formula in the book [4] by Szegö for Hermite functions, we can find a positive constant C, which can actually be estimated, such that

$$\|e_k\|_{L^\infty(\mathbb{R})} \leq C \quad (1.4)$$

for $k = 0, 1, 2, \ldots$. So, by (1.3) and (1.4),

$$|(f,e_k)| \leq C\|f\|_{L^1(\mathbb{R})}. \quad (1.5)$$

Hence, by (1.1), (1.2) and (1.5), we get

$$\|e^{-tH}f\|_{L^2(\mathbb{R})} \leq \frac{1}{2 \sinh t} \|f\|_{L^2(\mathbb{R})} \quad (1.6)$$

and

$$\|e^{-tH}f\|_{L^2(\mathbb{R})} \leq \frac{1}{2 \sinh t} C\|f\|_{L^1(\mathbb{R})}. \quad (1.7)$$

Hence, by (1.6), (1.7) and the Riesz-Thorin theorem, we get

$$\|e^{-tH}f\|_{L^2(\mathbb{R})} \leq C^{2^p-1} \frac{1}{2 \sinh t} \|f\|_{L^p(\mathbb{R})}$$

for $1 \leq p \leq 2$.

4
2 The Hermite Operator on the Heisenberg Group

Let $\frac{\partial}{\partial z}$ and $\frac{\partial}{\partial \bar{z}}$ be linear partial differential operators on \mathbb{R}^2 given by

$$\frac{\partial}{\partial z} = \frac{\partial}{\partial x} - i \frac{\partial}{\partial y}$$

and

$$\frac{\partial}{\partial \bar{z}} = \frac{\partial}{\partial x} + i \frac{\partial}{\partial y}.$$

Then we define the linear partial differential operator L on \mathbb{R}^2 by

$$L = -\frac{1}{2}(Z\bar{Z} + \bar{Z}Z),$$

where

$$Z = \frac{\partial}{\partial z} + \frac{1}{2}z, \quad \bar{z} = x - iy,$$

and

$$\bar{Z} = \frac{\partial}{\partial \bar{z}} - \frac{1}{2}z, \quad z = x + iy.$$

The vector fields Z and \bar{Z}, and the identity operator I form a basis for a Lie algebra in which the Lie bracket of two elements is their commutator. In fact, $-\bar{Z}$ is the formal adjoint of Z and L is an elliptic partial differential operator on \mathbb{R}^2 given by

$$L = -\Delta + \frac{1}{4}(x^2 + y^2) - i \left(x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x} \right),$$

where

$$\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}.$$

Thus, L is the ordinary Hermite operator $-\Delta + \frac{1}{4}(x^2 + y^2)$ perturbed by the partial differential operator $-iN$, where

$$N = x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x}.$$

5
is the rotation operator. We can think of L as the Hermite operator on \mathbb{H}^1. The vector fields Z and \overline{Z}, and the Hermite operator L are studied in the books [5, 6] by Thangavelu and [7] by Wong. The connection of L with the sub-Laplacian on the Heisenberg group \mathbb{H}^1 can be found in the book [6] by Thangavelu. The heat equations for the sub-Laplacians on Heisenberg groups are first solved explicitly and independently in [1] by Gaveau and in [2] by Hulanicki.

In this paper, we compute the Hermite semigroup on \mathbb{H}^1, i.e., the one-parameter strongly continuous semigroup e^{-tL}, $t > 0$, generated by L using an orthonormal basis for $L^2(\mathbb{R}^2)$ consisting of special Hermite functions on \mathbb{R}^2, which are eigenfunctions of L. We give a formula for the Hermite semigroup on \mathbb{H}^1 in terms of pseudo-differential operators of the Weyl type, i.e., Weyl transforms. The Hermite semigroup on \mathbb{H}^1 is then used to obtain an L^2 estimate for the solution of the initial value problem of the heat equation governed by L in terms of the L^p norm of the initial data for $1 \leq p \leq \infty$.

The results in this paper are valid for the Hermite operator L on \mathbb{H}^n given by

$$L = -\frac{1}{2} \sum_{j=1}^{n} (Z_j \overline{Z}_j + \overline{Z}_j Z_j),$$

where, for $j = 1, 2, \ldots, n$,

$$Z_j = \frac{\partial}{\partial z_j} + \frac{1}{2} z_j, \quad \overline{z}_j = x_j - iy_j,$$

and

$$\overline{Z}_j = \frac{\partial}{\partial \overline{z}_j} - \frac{1}{2} \overline{z}_j, \quad z_j = x_j + iy_j.$$

Of course, for $j = 1, 2, \ldots, n$,

$$\frac{\partial}{\partial z_j} = \frac{\partial}{\partial x_j} - i \frac{\partial}{\partial y_j}$$

and

$$\frac{\partial}{\partial \overline{z}_j} = \frac{\partial}{\partial x_j} + i \frac{\partial}{\partial y_j}. $$
Section 4.4 of the book [5] by Thangavelu contains some information on the L^p-L^2 estimates of the solutions of the wave equation governed by the Hermite operator L. The L^p norm of the solution of the wave equation for the special Hermite operator in terms of the initial data for values of p near 2 is studied in the paper [3] by Narayanan and Thangavelu.

3 Weyl Transforms

Let f and g be functions in the Schwartz space $S(\mathbb{R})$ on \mathbb{R}. Then the Fourier-Wigner transform $V(f, g)$ of f and g is defined by

$$V(f, g)(q, p) = (2\pi)^{-\frac{1}{2}} \int_{-\infty}^{\infty} e^{iqy} f\left(y + \frac{p}{2}\right) g\left(y - \frac{p}{2}\right) dy$$

(3.1)

for all q and p in \mathbb{R}. It can be proved that $V(f, g)$ is a function in the Schwartz space $S(\mathbb{R}^2)$ on \mathbb{R}^2. We define the Wigner transform $W(f, g)$ of f and g by

$$W(f, g) = V(f, g)\wedge,$$

(3.2)

where \hat{F} is the Fourier transform of F, which we choose to define by

$$\hat{F}(\zeta) = (2\pi)^{-\frac{n}{2}} \int_{\mathbb{R}^n} e^{-iz\cdot\zeta} F(z) dz, \quad \zeta \in \mathbb{R}^n,$$

for all F in the Schwartz space $S(\mathbb{R}^n)$ on \mathbb{R}^n. It can be shown that

$$W(f, g)(x, \xi) = (2\pi)^{-\frac{1}{2}} \int_{-\infty}^{\infty} e^{-i\xi p} f\left(x + \frac{p}{2}\right) g\left(x - \frac{p}{2}\right) dp$$

for all x and ξ in \mathbb{R}. It is obvious that

$$W(f, g) = W(g, f), \quad f, g \in S(\mathbb{R}).$$

(3.3)

Now, let $\sigma \in L^p(\mathbb{R}^2)$, $1 \leq p \leq \infty$, and let $f \in S(\mathbb{R})$. Then we define $W_\sigma f$ to be the tempered distribution on \mathbb{R} by

$$(W_\sigma f, g) = (2\pi)^{-\frac{1}{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sigma(x, \xi) W(f, g)(x, \xi) dx d\xi$$

(3.4)
for all g in $\mathcal{S}(\mathbb{R})$, where (F, G) is defined by

$$(F, G) = \int_{\mathbb{R}^n} F(z)\overline{G(z)}dz$$

for all measurable functions F and G on \mathbb{R}^n, provided that the integral exists. We call W_σ the Weyl transform associated to the symbol σ. It should be noted that if σ is a symbol in $\mathcal{S}(\mathbb{R}^2)$, then $W_\sigma f$ is a function in $\mathcal{S}(\mathbb{R})$ for all f in $\mathcal{S}(\mathbb{R})$.

We need the following result, which is an abridged version of Theorem 14.3 in the book [7] by Wong.

Theorem 3.1 Let $\sigma \in L^p(\mathbb{R}^2)$, $1 \leq p \leq 2$. Then W_σ is a bounded linear operator from $L^2(\mathbb{R})$ into $L^2(\mathbb{R})$ and

$$\|W_\sigma\|_* \leq (2\pi)^{-\frac{1}{p}}\|\sigma\|_{L^p(\mathbb{R}^2)},$$

where $\|W_\sigma\|_*$ is the operator norm of $W_\sigma : L^2(\mathbb{R}) \to L^2(\mathbb{R})$.

4 Hermite Functions on \mathbb{R}^2

For $j, k = 0, 1, 2, \ldots$, we define the Hermite function $e_{j,k}$ on \mathbb{R}^2 by

$$e_{j,k}(x,y) = V(e_j,e_k)(x,y)$$

for all x and y in \mathbb{R}. Then we have the following fact, which is Theorem 21.2 in the book [7] by Wong.

Theorem 4.1 $\{e_{j,k} : j, k = 0, 1, 2, \ldots\}$ is an orthonormal basis for $L^2(\mathbb{R}^2)$.

The spectral analysis of the Hermite operator L on \mathbb{H}^1 is based on the following result, which is Theorem 22.1 in the book [7] by Wong.

Theorem 4.2 For all x and y in \mathbb{R},

$$(Ze_{j,k})(x,y) = i(2k)^{\frac{1}{2}}e_{j,k-1}(x,y), \quad j = 0, 1, 2, \ldots, \quad k = 1, 2, \ldots,$$

and

$$(\overline{Ze_{j,k}})(x,y) = i(2k+2)^{\frac{1}{2}}e_{j,k+1}(x,y), \quad j, k = 0, 1, 2, \ldots.$$
Remark 4.3 In view of Theorem 4.2, we call Z and \overline{Z} the annihilation operator and the creation operator, respectively, for the special Hermite functions $e_{j,k}$, $j, k = 0, 1, 2, \ldots$, on \mathbb{R}^2.

An immediate consequence of Theorem 4.2 is the following theorem.

Theorem 4.4 $L e_{j,k} = (2k + 1)e_{j,k}$, $j, k = 0, 1, 2, \ldots$.

Remark 4.5 Theorem 4.4 says that for $k = 0, 1, 2, \ldots$, the number $2k + 1$ is an eigenvalue of the Hermite operator L on \mathbb{H}^1, and the Hermite functions $e_{j,k}$, $j = 0, 1, 2, \ldots$, on \mathbb{R}^2 are eigenfunctions of L corresponding to the eigenvalue $2k + 1$.

5 The Hermite Semigroup on \mathbb{H}^1

A formula for the Hermite semigroup e^{-tL}, $t > 0$, on \mathbb{H}^1 is given in the following theorem.

Theorem 5.1 Let $f \in \mathcal{S}(\mathbb{R}^2)$. Then for $t > 0$,

$$e^{-tL}f = (2\pi)^{\frac{1}{2}} \sum_{k=0}^{\infty} e^{-t(2k+1)}V(Wf e_k, e_k),$$

where the convergence is uniform and absolute on \mathbb{R}^2.

Proof Let f be any function in $\mathcal{S}(\mathbb{R}^2)$. Then for $t > 0$, we use Theorem 4.4 to get

$$e^{-tL}f = \sum_{k=0}^{\infty} \sum_{j=0}^{\infty} e^{-t(2k+1)}(f, e_{j,k})e_{j,k},\quad (5.1)$$

where the series is convergent in $L^2(\mathbb{R}^2)$, and is also uniformly and absolutely convergent on \mathbb{R}^2. Now, by (3.1)–(3.4) and Plancherel’s theorem,

$$\begin{align*}
(f, e_{j,k}) &= \int_{\mathbb{R}^2} f(z)\overline{V(e_j, e_k)(z)}dz \\
&= \int_{\mathbb{R}^2} \hat{f}(\zeta)\overline{V(e_j, e_k)(\zeta)}d\zeta \\
&= \int_{\mathbb{R}^2} \hat{f}(\zeta)\overline{W(e_j, e_k)(\zeta)}d\zeta \\
&= (2\pi)^{\frac{1}{2}}(Wf e_k, e_j)\quad (5.2)
\end{align*}$$

9
for \(j, k = 0, 1, 2, \ldots \) Similarly, for \(j, k = 0, 1, 2, \ldots \), and \(g \) in \(\mathcal{S}(\mathbb{R}^2) \), we get
\[
(e_{j,k}, g) = (g, e_{j,k}) = (2\pi)^{\frac{1}{2}}(W_\hat{g}e_k, e_j) = (2\pi)^{\frac{1}{2}}(e_j, W_\hat{g}e_k).
\] (5.3)

So, by (5.1)–(5.3), Fubini’s theorem and Parseval’s identity,
\[
(e^{-tL}f, g) = 2\pi \sum_{k=0}^{\infty} e^{-(2k+1)t} \sum_{j=0}^{\infty} (W_\hat{f}e_k, e_j) (e_j, W_\hat{g}e_k)
\]
\[
= 2\pi \sum_{k=0}^{\infty} e^{-(2k+1)t}(W_\hat{f}e_k, W_\hat{g}e_k)
\] (5.4)

for \(t > 0 \), where the series is absolutely convergent on \(\mathbb{R} \). But, by (3.2)–(3.4) and Plancherel’s theorem,
\[
(W_\hat{f}e_k, W_\hat{g}e_k) = (2\pi)^{\frac{1}{2}} \int_{\mathbb{R}^2} \hat{g}(z) W_\hat{f}(e_k, e_k)(z) dz
\]
\[
= (2\pi)^{\frac{1}{2}} \int_{\mathbb{R}^2} W_\hat{f}(e_k, e_k)(z) \hat{g}(z) dz
\]
\[
= (2\pi)^{\frac{1}{2}} \int_{\mathbb{R}^2} V(W_\hat{f}e_k, e_k)(z) \hat{g}(z) dz
\] (5.5)

for \(k = 0, 1, 2, \ldots \) Thus, by (5.4), (5.5) and Fubini’s theorem,
\[
(e^{-tL}f, g) = (2\pi)^{\frac{1}{2}} \sum_{k=0}^{\infty} e^{-(2k+1)t}(V(W_\hat{f}e_k, e_k), g)
\]
\[
= (2\pi)^{\frac{1}{2}} \left(\sum_{k=0}^{\infty} e^{-(2k+1)t}V(W_\hat{f}e_k, e_k), g \right)
\] (5.6)

for all \(f \) and \(g \) in \(\mathcal{S}(\mathbb{R}^2) \) and \(t > 0 \). Thus, by (5.6),
\[
e^{-tL}f = (2\pi)^{\frac{1}{2}} \sum_{k=0}^{\infty} e^{-(2k+1)t}V(W_\hat{f}e_k, e_k)
\]

for all \(f \) in \(\mathcal{S}(\mathbb{R}^2) \) and \(t > 0 \), where the uniform and absolute convergence of the series follows from (3.1) and Theorem 3.1.
\]
6 An $L^p - L^2$ Estimate, $1 \leq p \leq 2$

We begin with the following result, which is known as the Moyal identity and can be found in the book [7] by Wong.

Theorem 6.1 For all f and g in $\mathcal{S}(\mathbb{R})$,

$$\|V(f, g)\|_{L^2(\mathbb{R}^2)} = \|f\|_{L^2(\mathbb{R})}\|g\|_{L^2(\mathbb{R})}.$$

We can now prove the following theorem as an application of the formula for the Hermite semigroup on H^1 given in Theorem 5.1.

Theorem 6.2 For $t > 0$, the Hermite semigroup e^{-tL} on H^1, initially defined on $\mathcal{S}(\mathbb{R}^2)$, can be extended to a unique bounded linear operator from $L^p(\mathbb{R}^2)$ into $L^2(\mathbb{R}^2)$, which we again denote by e^{-tL}, and

$$\|e^{-tL}f\|_{L^2(\mathbb{R}^2)} \leq (2\pi)^{\frac{1}{2} - \frac{1}{p}} \frac{1}{2\sinh t} \|f\|_{L^p(\mathbb{R}^2)}$$

for all f in $L^p(\mathbb{R}^2)$, $1 \leq p \leq 2$.

Proof Let $f \in \mathcal{S}(\mathbb{R}^2)$. Then, by Theorems 5.1 and 6.1, and Minkowski’s inequality

$$\|e^{-tL}f\|_{L^2(\mathbb{R}^2)} \leq (2\pi)^{\frac{1}{2}} \sum_{k=0}^{\infty} e^{-(2k+1)t} \|V(W_{\hat{f}}e_k, e_k)\|_{L^2(\mathbb{R}^2)}$$

$$= (2\pi)^{\frac{1}{2}} \sum_{k=0}^{\infty} e^{-(2k+1)t} \|W_{\hat{f}}e_k\|_{L^2(\mathbb{R})} \|e_k\|_{L^2(\mathbb{R})}$$

$$= (2\pi)^{\frac{1}{2}} \sum_{k=0}^{\infty} e^{-(2k+1)t} \|W_{\hat{f}}e_k\|_{L^2(\mathbb{R})}$$

(6.1)

for $t > 0$. So, by (6.1) and Theorem 3.1, we get for $t > 0$,

$$\|e^{-tL}f\|_{L^2(\mathbb{R}^2)} \leq (2\pi)^{\frac{1}{2}} \sum_{k=0}^{\infty} e^{-(2k+1)t} (2\pi)^{\frac{1}{2}} \frac{1}{2\sinh t} \|f\|_{L^p(\mathbb{R}^2)}$$

$$= (2\pi)^{\frac{1}{2} - \frac{1}{p}} \frac{1}{2\sinh t} \|f\|_{L^p(\mathbb{R}^2)}$$

(6.2)

for all f in $\mathcal{S}(\mathbb{R}^2)$. Thus, by (6.2) and a density argument, the proof is complete. \qed
Remark 6.3 Theorem 6.2 gives an \(L^2 \) estimate for the solution of the initial value problem

\[
\begin{aligned}
\frac{\partial u}{\partial t}(z,t) &= (Lu)(z,t), \quad z \in \mathbb{R}^2, \quad t > 0, \\
\quad u(z,0) &= f(z), \quad z \in \mathbb{R}^2,
\end{aligned}
\] (6.3)

in terms of the \(L^p \) norm of the initial data \(f \), \(1 \leq p \leq 2 \).

Remark 6.4 Instead of using Weyl transforms, Theorem 6.2 can be proved using an \(L^p - L^2 \) restriction theorem such as Theorem 2.5.4 in the book [5] by Thangavelu. To wit, we note that the formula (5.1) for the special Hermite semigroup gives

\[e^{-tL}f = \sum_{k=0}^{\infty} e^{-(2k+1)t}Q_kf, \quad f \in \mathcal{S}(\mathbb{R}^2), \]

where \(Q_k \) is the projection onto the eigenspace corresponding to the eigenvalue \(2k + 1 \). Thus, by Theorem 2.5.4 in [5], the estimate for \(p = 1 \) follows. The estimate for \(p = 2 \) is easy. Hence the estimate for \(1 \leq p \leq 2 \) follows if we interpolate.

7 An \(L^p-L^2 \) Estimate, \(1 \leq p \leq \infty \)

Using the theory of localization operators on the Weyl-Heisenberg group in the paper [8] or Chapter 17 of the book [9] by Wong, we can give an \(L^p-L^2 \) estimate for \(1 \leq p \leq \infty \). To this end, we need two results.

Theorem 7.1 Let \(\Lambda \) be the function on \(\mathbb{C} \) defined by

\[\Lambda(z) = \pi^{-1}e^{-|z|^2}, \quad z \in \mathbb{C}. \]

Then for all \(F \in L^p(\mathbb{C}), 1 \leq p \leq \infty, \)

\[W_{F \ast \Lambda} = L_F, \]

where \(L_F \) is the localization operator on the Weyl-Heisenberg group with symbol \(F \).

Theorem 7.2 Let $F \in L^p(\mathbb{C})$, $1 \leq p \leq \infty$. Then

$$\|L_F\|_* \leq (2\pi)^{-\frac{1}{2}} \|F\|_{L^p(\mathbb{C})}.$$

Theorem 7.2 is Theorem 17.11 in the book [9] by Wong.

The main result in this section is the following theorem.

Theorem 7.3 Let $g \in L^p(\mathbb{C})$, $1 \leq p \leq \infty$, and let u be the solution of the initial value problem (6.3) with initial data $(g \ast \Lambda)^\vee$, where \vee is the inverse Fourier transform. Then

$$\|u\|_{L^2(\mathbb{R}^2)} \leq (2\pi)^{\frac{1}{2}} \frac{1}{2 \sinh t} \|g\|_{L^p(\mathbb{R}^2)}.$$

The proof is the same as that of Theorem 6.2 if we note that, by Theorem 7.1, $W_j = W_{g \ast \Lambda} = L_g$ and hence the estimate follows from Theorem 7.2.

References

