EVERY 1-GENERIC COMPUTES A PROPERLY 1-GENERIC

BARBARA F. CSIMA
FIELDS INSTITUTE, MARCH 31, 3:30–5:00PM

A real is n-generic iff for all Σ^0_n sets of strings S, there is some initial segment σ of A such that $\sigma \in S$ or $\sigma \not\subseteq \tau$ for all $\tau \in S$. A real is called properly n-generic if it is n-generic but not $n+1$-generic. We show that every 1-generic real computes a properly 1-generic real. On the other hand, if $m > n \geq 2$ then an m-generic real cannot compute a properly n-generic real.

This is joint work with Rod Downey, Noam Greenberg, Denis Hirschfeldt, and Joe Miller.