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Abstract

For a complete lattice V which, as a category, is monoidal closed, and for a suitable Set-
monad T we consider (T,V)-algebras and introduce (T,V)-proalgebras, in generalization of
Lawvere’s presentation of metric spaces and Barr’s presentation of topological spaces. In
this lax-algebraic setting, uniform spaces appear as proalgebras. Since the corresponding
categories behave functorially both in T and in V, one establishes a network of functors at
the general level which describe the basic connections between the structures mentioned by
the title. Categories of (T,V)-algebras and of (T,V)-proalgebras turn out to be topological
over Set.
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0 Introduction

Since the late sixties it has been known that monads over the category Set, via their Eilenberg-
Moore construction [9], describe precisely the varieties of general algebras (with arbitrarily many
infinitary operations and free algebras, see for example [13, 10]), and therefore provide a common
categorical description not only of the standard categories of algebra, such as groups, rings, R-
modules, R-algebras, etc., but also of some categories outside the realm of algebra, such as
the category of compact Hausdorff spaces. The equational description of this latter category
by Manes [16] in terms of the “operation” that sends an ultrafilter to a point of convergence
satisfying two basic “equations” fully explained many of the algebraic properties of CompHaus
and enjoyed wide-spread attention. By comparison, there was only moderate interest in Barr’s
subsequent observation that, when relaxing the operation to a relation and the equalities to
inequalities, the Eilenberg-Moore construction actually describes precisely the category Top of
all topological spaces, in terms of two simple axioms on a convergence relation between ultrafilters
and points [2]. It is the aim of this paper to show that, with one additional ingredient to Barr’s
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presentation, one is able to describe uniformly all structures that seem to matter in topology,
namely metrics, topologies, uniformities and approach structures (as introduced by [14]), and to
display the basic functors connecting them in general terms.

This one additional ingredient is an arbitrary complete lattice V with a monoidal-closed
structure that takes the place of the 2-element chain which implicitly governs the axioms defin-
ing topological spaces. Lawvere in his fundamental paper [12] considered for V the extended
real half-line R+ = [0,∞] (ordered opposite to the natural order) and displayed individual met-
ric spaces as V-categories. In [7], we combined Barr’s and Lawvere’s ideas and introduced
(T,V)-algebras, for a monad T on Set and a symmetric monoidal-closed category V, obtaining
topological spaces for T = U the ultrafilter monad and V = 2, premetric (=∞pq-metric) spaces
for T = 1 the identity monad and V = R+, and approach spaces via the natural combination
of the previous two structures, with T = U and V = R+. However, we were not able to include
uniformities in this setting, although their inclusion in the setting given in [4] indicated that it
should be possible to do so.

This paper fills the gap. Instead of considering sets X with a single V-relational Eilenberg-
Moore structure TX 9 X, we define (T,V)-proalgebras as sets which come with a directed set
of V-relational structures TX 9 X. The category of quasi-uniform spaces is equivalent to the
category of (1,2)-proalgebras, denoted here by ProOrd since (1,2)-algebras form precisely the
category Ord of preordered sets. Likewise, the category of (1,R+)-proalgebras is denoted by
ProMet since (1,R+)-algebras form precisely the category Met of premetric spaces; it is closely
related to the category of approach-uniform spaces considered in [15]. By further exploiting the
fact that the formation of the categories of (T,V)-algebras and of (T,V)-proalgebras behaves
functorially in both T and V, we arrive at a commutative diagram which, together with the
various adjoints to the embeddings, not only comprehensively describes the basic connections
between the fundamental topological structures already mentioned, but also introduces two new
players: protopological spaces (T = U, V = 2), not to be confused though closely related with
pretopological and pseudotopological spaces as discussed in [11], as well as proapproach spaces
(T = U, V = R+). They turn out to be useful when describing some of the connections between
the previous categories.

ProTop � � // ProApp

Top
) 	

66mmmmmmm� � // App
) 	

66mmmmmmm

ProOrd � � //?�

OO

ProMet
?�

OO

Ord � � //
( �

66lllllll?�

OO

Met
( �

66lllllll?�

OO

The horizontal embeddings in the diagram above are both reflective and coreflective, a fact
that was observed in [14] for Top ↪→ App, all arising from the both reflective and coreflective
embedding 2 → R+. The vertical embeddings are coreflective, with the coreflector always
induced by the monad morphism 1 → U. The diagonal embeddings are coreflective as well,
with the coreflector always given by “meet”. The “induced topology” functor of (quasi-)uniform
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spaces factors through the coreflector of Top ↪→ ProTop.
For our (T,V)-algebras and (T,V)-proalgebras, the two basic axioms of an Eilenberg-Moore

algebra, namely the unit and the associativity laws, look more like reflexivity and transitivity
conditions. We show that, with a formally inverted Kleisli-composition law, the two axioms may
also be presented as extensitivity and idempotency conditions. For a topological space, this is
exactly the transition from its convergence structure to its Kuratowski closure operation. We
extend a result of [4] and give a general proof that the categories occuring in the diagram above
are topological over Set, by showing the existence of initial structures w.r.t. the underlying Set-
functors. Furthermore, in the examples considered here we describe explicitly the 2-categorical
structure of categories of (T,V)-algebras as given in [7] and extend it naturally to categories of
(T,V)-proalgebras.

Finally we point out that, like (T,V)-algebras, also (T,V)-proalgebras may be considered
more generally when V is an arbitrary symmetric monoidal category with coproducts preserved
by tensor in each variable, not just a lattice, for the price that one then has to deal with a con-
siderable number of coherence issues which make the treatment considerably more cumbersome
(as indicated in [7] and [6] in the case of (T,V)-algebras). But even in this more general context
it is possible to prove significant results. For example, the paper [6] shows the local cartesian
closedness of categories of (T,V)-algebras which are only reflexive, not necessarily transitive,
and thereby provides an important step towards a characterization of exponentiable maps in the
category of all (T,V)-algebras. Another type of maps which is notoriously difficult to describe,
namely the class of effective descent morphisms, is characterized in [5] for certain cases.

1 Categories of V-matrices

1.1 Hypothesis. Let V be a complete lattice which, when considered as a category, is sym-
metric monoidal-closed. Hence, there are a distinguished element k ∈ V and an associative and
commutative binary operation ⊗ on V for which k is neutral and which preserves suprema in
each variable:

a⊗
∨
i∈I

bi =
∨
i∈I

a⊗ bi.

1.2 Examples. (1) Each frame (=complete lattice in which binary meets distribute over ar-
bitrary joins) is symmetric monoidal-closed, with ⊗ given by binary meet and k = > the top
element. In particular, the two-element chain

2 = {⊥,>}

carries this structure.

(2) [12] Let R+ = [0,∞] be the extended real (half-)line, provided with the order opposite to the
natural order (so that

∨
i∈I

ai = inf
i∈I

ai is the natural infimum of the elements ai), and with ⊗ = +
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the addition (extended by a +∞ = ∞ + a = ∞) and k = 0. In this way we consider R+ as a
symmetric monoidal-closed lattice.

For future reference we remark that the embedding (considered as a functor between “thin”
categories, i.e. preordered sets)

E : 2 → R+, ⊥ 7→ ∞, > 7→ 0,

has both a right adjoint retraction

R : R+ → 2, (0 < x <∞) 7→ ⊥,

and a left adjoint retraction

L : R+ → 2, (0 < x <∞) 7→ >.

1.3 V-matrices. The category Mat(V) of V-matrices has as its objects sets, and its morphisms
r : X 9 Y are functions r : X × Y → V, often written as families r = (r(x, y))x∈X, y∈Y ; the
composite arrow of r followed by s : Y 9 Z is given by matrix multiplication

(sr)(x, z) =
∨
y∈Y

r(x, y)⊗ s(y, z),

and the identity arrow 1X : X 9 X is the diagonal matrix with values k in the main diagonal
and all other values ⊥, the bottom element of V.

The hom-sets of Mat(V) are partially ordered by

r ≤ r′ ⇔ ∀x ∈ X ∀y ∈ Y : r(x, y) ≤ r′(x, y),

compatibly with composition. Hence, Mat(V) is actually a 2-category. In addition, Mat(V)
has an order-preserving involution, given by matrix transposition: the transpose r◦ : Y 9 X of
r : X 9 Y is defined by r◦(y, x) = r(x, y), x ∈ X, y ∈ Y , and satisfies

(sr)◦ = r◦s◦, (1X)◦ = 1X .

Finally, there is a functor
Set → Mat(V)

which maps objects identically and treats f : X → Y in Set as a matrix f : X 9 Y , putting

f(x, y) =

{
k if f(x) = y

⊥ else.

When we write f : X → Y in Mat(V), it is understood that f is a set map considered as a
matrix in this way. In the 2-category Mat(V) f plays the role of a map (in the sense of Lawvere),
satisfying the inequalities 1X ≤ f◦f and ff◦ ≤ 1Y . We also note that the matrix composition
becomes a lot simpler when one of the players is a map:

(sf)(x, z) = s(f(x), z), (gr)(x, z) =
∨

y : g(y)=z

r(x, y)
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for f : X → Y , s : Y 9 Z, r : X 9 Y and g : Y → Z; furthermore, with t : X 9 Z one has the
adjunction rules

t ≤ sf

tf◦ ≤ s

gr ≤ t

r ≤ g◦t
. (1)

1.4 Examples. (1) For V = 2, Mat(V) is the 2-category Rel(Set) whose objects are sets and
whose morphisms are relations r : X 9 Y which, when we write xry instead of r(x, y) = >,
compose as usual as

x(sr)z ⇔ ∃y : xry & ysz.

(2) For V = R+, the morphisms r : X 9 Y of Mat(V) are functions providing for x ∈ X and
y ∈ Y a (generalized) “distance” r(x, y) ∈ R+, with composite distances given by

(sr)(x, z) = inf
y∈Y

(r(x, y) + s(y, z));

1X puts a discrete structure on X. Alternatively, one may think of r as of a fuzzy relation from
X to Y .

1.5 Changing V. Let W be, like V, a symmetric monoidal-closed complete lattice, and let
F : V → W be a lax morphism of monoidal categories, i.e. a monotone function satisfying

Fx⊗ Fy ≤ F (x⊗ y) and l ≤ Fk

for all x, y ∈ V, with l denoting the ⊗-neutral element in W. Then F induces a lax functor

Mat(V) → Mat(W)

which maps objects identically and sends r : X × Y → V to Fr. Hence, for all r : X 9 Y ,
s : Y 9 Z,

(Fs)(Fr) ≤ F (sr) and 1X ≤ F1X

in Mat(W). More generally, f ≤ Ff for every Set-map f : X → Y , and the triangle

Set
yyrrrrr

&&MMMMM

Mat(V) // Mat(W)

commutes if Fk = l. But even without the latter condition, one always has (Fs)(Ff) = F (sf),
whereas the more general equality (Fs)(Fr) = F (sr) would require F : V → W to preserve the
tensor product strictly as well as suprema. Of course, the lax extension of F commutes with the
involution:

F (r◦) = (Fr)◦.

The functors E, L, R of 1.2(2) preserve the tensor product, and E, L preserve joins, but R
not so.
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2 Categories of V-promatrices

2.1 Preamble. The completion ProA of a partially ordered set A under down-directed infima
is given by its down-directed subsets D ⊆ A (so that every finite subset of D has a lower bound
in D, in particular D 6= ∅), preordered by

D ≤ E :⇔ ∀e ∈ E ∃d ∈ D : d ≤ e.

(This is a special case of the well-known construction of the procategory ProA for a category A;
see, for example, [17].) There is a natural embedding

A→ ProA, x 7→ {x},

which has a right adjoint if and only if A has all down-directed infima.

2.2 V-promatrices. For V as in 1.1 one constructs the category

ProMat(V)

having objects sets, with hom-sets given by the formula

ProMat(V)(X,Y ) = Pro(Mat(V)(X,Y )).

Hence, a morphism R : X 9 Y in ProMat(V) is a down-directed set of morphisms r : X 9 Y

in Mat(V); its composite with S : Y 9 Z is the set

SR = {sr | r ∈ R, s ∈ S}

of composites sr taken in Mat(V). The composition is compatible with the preorder of the
hom-sets, whence ProMat(V) is a 2-category. There is a natural 2-functor

Mat(V) → ProMat(V)

which maps objects identically and interprets r : X 9 Y as {r} : X 9 Y . Its right adjoints at
the hom-level (see 2.1) define a lax functor

Λ : ProMat(V) → Mat(V)

which sends R : X 9 Y to its meet
∧
R, taken pointwise.

Trivially, the involution of Mat(V) extends to ProMat(V) via

R◦ = {r◦ | r ∈ R}.

2.3 Changing V. For a morphism F : V → W as in 1.5, its lax extension Mat(V) → Mat(W)
extends further to a lax functor

ProMat(V) → ProMat(W),

sending R : X 9 Y to FR := {Fr | r ∈ R} : X 9 Y and commuting with the involution.
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3 (T,V)-algebras

3.1 V-admissible monads. Recall that a monad T = (T, e,m) of Set (or any other category)
is given by an endofunctor T together with natural transformations e : Id → T , m : TT → T

satisfying the unit and associativity laws

m(Te) = 1 = m(eT ), m(Tm) = m(mT ).

For V as in 1.1 we call the monad V-admissible if T : Set → Set admits a lax extension

T : Mat(V) → Mat(V)

along Set → Mat(V) which makes the transformations e and m op-lax in Mat(V) and commutes
with the involution. Explicitly, the Set-monad T allows for an extension

(r : X 9 Y ) 7→ (Tr : TX 9 TY )

which preserves the partial order described in 1.3 and must satisfy

(0) (Tr)◦ ≤ T (r◦),

(1) eY r ≤ (Tr)eX ,

(2) mY (T 2r) ≤ (Tr)mX ,

(3) (Ts)(Tr) ≤ T (sr)

for all r : X 9 Y , s : Y 9 Z. We hasten to remark that in (0) we have in fact an equality (as
one easily sees applying the inequality (0) to r◦ in lieu of r). In pointwise notation, (1)-(3) mean

(1′) r(x, y) ≤ Tr(eX(x), eY (y)),

(2′) T 2r(X,Y) ≤ Tr(mX(X),mY (Y)),

(3′) Tr(x, y)⊗ Ts(y, z) ≤ T (sr)(x, z),

for all x ∈ X, y ∈ Y , X ∈ T 2X, Y ∈ T 2Y , x ∈ TX, y ∈ TY , z ∈ TZ. When r = f is a Set-map
one has

T (sf) ≤ T (sf)(Tf◦)(Tf) ≤ T (sff◦)(Tf) ≤ (Ts)(Tf),

hence (3) becomes an equality in this case, reading as Ts(Tf(x), z) = T (sf)(x, z) in pointwise
notation. Likewise, when s = g is a Set-map one has the equality

(Tg◦)(Tr) = T (g◦r).

3.2 Remark. A lax extension to Mat(V) of a V-admissible Set-monad T need not be unique.
For example, the identity monad admits a non-identical lax extension I to Mat(3), where 3 is
the 3-element chain, as follows:

(Ir)(x, y) =

{
⊥ if r(x, y) = ⊥,
> else,
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for all r : X 9 Y , x ∈ X, y ∈ Y .
Hence, when talking about a V-admissible Set-monad T, we always have a fixed lax extension

of T to Mat(V) in mind.

3.3 (T,V)-algebras. For a V-admissible monad T = (T, e,m) one forms the category

Alg(T,V)

of (reflexive and transitive) (T,V)-algebras, as follows: its objects are pairs (X, a) with a set X
and a structure a : TX 9 X in Mat(V) satisfying the reflexivity and transitivity laws

(4) 1X ≤ aeX ,

(5) a(Ta) ≤ amX ,

which, when expressed pointwise, read as

(4′) k ≤ a(eX(x), x),

(5′) Ta(X, y)⊗ a(y, z) ≤ a(mX(X), z),

for all x, z ∈ X, y ∈ TX and X ∈ T 2X.
A morphism f : (X, a) → (Y, b) in Alg(T,V) is a lax homomorphism, i.e. a Set-map

f : X → Y satisfying

(6) fa ≤ b(Tf),

the pointwise version of which reads as

(6′) a(x, y) ≤ b(Tf(x), f(y))

for all x ∈ TX, y ∈ X. Composition is as in Set.

3.4 Co-Kleisli composition. There is another way of thinking of the two fundamental condi-
tions (4), (5). First of all, there is a least (T,V)-algebra structure on each set X, namely e◦X ,
which in fact defines the left adjoint to the forgetful functor

Alg(T,V) → Set.

Now, (4) of 3.3 reads as the extensivity law

(4′′) e◦X ≤ a.

With the co-Kleisli composition
a ∗ b := a(Tb)m◦

X

for all a, b : TX 9 X, condition (5) presents itself as

(5′′) a ∗ a ≤ a.
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Since the co-Kleisli composition is monotone in each variable, so that (4′′) implies a = a ∗ e◦X ≤
a ∗ a, (5) in the presence of (4) has become equivalent to the idempotency condition a ∗ a = a.

Of course, the co-Kleisli composition is in fact the Kleisli composition for the lax comonad
(T, e◦,m◦) of the selfdual 2-category Mat(V).

3.5 Ordering homomorphisms. We recall from [7] that Alg(T,V) actually carries the struc-
ture of a 2-category since its ordinary hom-sets Alg(T,V)((X, a), (Y, b)) may be compatibly
preordered by

f ≤ g :⇔ gf◦ ≤ beY ⇔ 1X ≤ g◦beY f,

which, in pointwise notation, read as

f ≤ g ⇔ ∀x ∈ X : k ≤ b(eY f(x), g(x)).

Reflexivity follows immediately from (4). For transitivity we observe that when f ≤ g and g ≤ h,
with (1) and (5) one obtains f ≤ h:

hf◦ ≤ (hg◦)(gf◦)
≤ (beY )(beY )
≤ b(Tb)eTY eY
≤ b(mY eTY )eY
= beY .

3.6 Change-of-base functors. If the monad T is both V- and W-admissible, so that T
extends to an endofunctor of both Mat(V) and Mat(W), for a morphism F : V → W of
monoidal categories as in 1.5 we call T F -admissible if the extension F : Mat(V) → Mat(W)
satisfies

(7) TFr ≤ FTr

for all r : X 9 Y . In this case F induces a 2-functor

F : Alg(T,V) → Alg(T,W)

which maps an object (X, a) to (X,Fa) and leaves morphisms unchanged. This is due to the
fact that F preserves the co-Kleisli composition laxly:

(8) (Fa) ∗ (Fb) ≤ F (a ∗ b);

indeed,
(Fa)(TFb)m◦

X ≤ (Fa)(FTb)(Fm◦
X) ≤ F (a(Tb)m◦

X).

Consequently, (Fa)∗(Fa) ≤ F (a∗a) ≤ Fa, which shows preservation of (5′′) by F . Also, e◦X ≤ a

gives immediately e◦X ≤ Fe◦X ≤ Fa, hence preservation of (4′′) follows. Similarly one deals with
the homomorphism condition (6) and preservation of the preorder 3.5.

3.7 Algebraic functors. Let us now consider V-admissible monads T = (T, e,m) and S =
(S, d, n) of Set with a morphism j : S → T of monads, i.e. a natural transformation j : S → T
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satisfying
jd = e and jn = mj2 (with j2 = Tj · jS = jT · Sj).

If the extensions of T and S to Mat(V) make j op-lax, so that

(9) jY (Sr) ≤ (Tr)jX

for all r : X 9 Y in Mat(V), which in pointwise notation reads as

(9′) Sr(x, y) ≤ Tr(jX(x), jY (y))

for all x ∈ SX, y ∈ SY , then j induces a 2-functor

J : Alg(T,V) → Alg(S,V),

sending (X, a) to (X, ajX) and mapping morphisms identically. Since 1X ≤ aeX = (ajX)dX ,
(X, ajX) remains reflexive, while its transitivity follows from (3), (9), (5); indeed,

(ajX)S(ajX) = ajX(Sa)(SjX)
≤ a(Ta)jTX(SjX)
≤ amXjTX(SjX)
= (ajX)nX .

A morphism f : (X, a) → (Y, b) in Alg(T,V) becomes a morphism f : (X, ajX) → (Y, bjY ) since

f(ajX) ≤ b(Tf)jX = (bjY )(Sf).

One easily sees that the preorder on the hom-sets is preserved as well.
Often we consider the case S = 1 = (Id, 1, 1); then necessarily j = e, and we obtain a

2-functor
J : Alg(T,V) → Alg(1,V), (X, a) 7→ (X, aeX).

3.8 Proposition. For every morphism F : V → W of monoidal lattices as in 1.5 and every
F -admissible Set-monad T there is a commutative diagram of 2-functors

(X, a) � //
_

��

(X,Fa)
_

��

Alg(T,V)

J

��

F //

&&MMM
MMM

Alg(T,W)

J

��

xxqqq
qqq

Set

Alg(1,V)

88qqqqqq

F

// Alg(1,W)

ffMMMMMM

(X, aeX) � // (X,F (aeX) = (Fa)eX).

An example of this situation is considered in Section 5.
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4 (T,V)-proalgebras

4.1 Monad extension. For V as in 1.1 and a V-admissible Set-monad T = (T, e,m), the lax
extension T : Mat(V) → Mat(V) admits a further extension

T : ProMat(V) → ProMat(V)
(R : X 9 Y ) 7→ (TR := {Tr | r ∈ R} : X 9 Y ),

which automatically satisfies the conditions

(0) (TR)◦ ≤ T (R◦),

(1) eYR ≤ (TR)eX ,

(2) mY (T 2R) ≤ (TR)mX ,

(3) (TS)(TR) ≤ T (SR)

for all R : X 9 Y, S : Y 9 Z, with equality holding when R is a map (more precisely: a singleton
set {f} containing a map f ; here notationally we don’t distinguish between {f} and f).

4.2 (T,V)-proalgebras. For V as in 1.1 and a V-admissible monad T = (T, e,m) of Set, a
(T,V)-proalgebra (X,A) is a set X with a morphism A : TX 9 X in ProMat(V) satisfying the
reflexivity and transitivity conditions

(4) 1X ≤ AeX ,

(5) A(TA) ≤ AmX .

This means that A is a down-directed set of morphisms TX 9 X in Mat(V) satisfying the
conditions

(4′) ∀a ∈ A : 1X ≤ aeX ,

(5′) ∀a ∈ A ∃b ∈ A : b(Tb) ≤ amX ,

which are expressed pointwise as in 3.3, and in terms of the co-Kleisli composition as

(4′′) ∀a ∈ A : e◦X ≤ a,

(5′′) ∀a ∈ A ∃b ∈ A : b ∗ b ≤ a.

A lax homomorphism f : (X,A) → (Y,B) of (T,V)-proalgebras is a Set-map f : X → Y

satisfying

(6) fA ≤ B(Tf),

meaning that

(6′) ∀b ∈ B ∃a ∈ A : fa ≤ b(Tf),
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to be expressed pointwise as in 3.3. With composition of Set-maps, this defines the ordinary
category

ProAlg(T,V).

4.3 Ordering and coreflection. When we preorder the hom-sets ProAlg(T,V)((X,A), (Y,B))
by

f ≤ g :⇔ ∀b ∈ B gf◦ ≤ beY

it is easy to see that ProAlg(T,V) becomes a 2-category: the only slightly critical part is to check
that f ≤ g implies hf ≤ hg for every morphism h : (Y,B) → (Z,C); but for all c ∈ C there is
b ∈ B such that

1X ≤ g◦beY f ≤ g◦h◦hbeY f ≤ (hg)◦c(Th)eY f = (hg)◦ceZ(hf),

as desired. Furthermore, the full embedding

Alg(T,V) ↪→ ProAlg(T,V)

is obviously a 2-functor. More importantly, there is a 2-functor

Λ : ProAlg(T,V) → Alg(T,V), (X,A) 7→ (X,ΛA),

which is right adjoint to the embedding, with ΛA =
∧
A (see 2.2). Indeed, 1X ≤ AeX implies

1X ≤ (ΛA)eX , and from A(TA) ≤ AmX one obtains for all a ∈ A some b ∈ A with

(ΛA)(TΛA) ≤ (ΛA)(ΛTA) ≤ b(Tb) ≤ amX ,

hence (ΛA)(TΛA) ≤ Λ(AmX) = (ΛA)mX . Similarly one shows that a morphism f : (X,A) →
(Y,B) becomes a morphism f : (X,ΛA) → (Y,ΛB), with the preorder being preserved, as well
as right adjointness.

4.4 Change-of-base functors. Let now F : V → W be as in 1.5, and consider an F -admissible
monad T as in 3.6. Then the extension 2.3 F : ProMat(V) → ProMat(V) satisfies

(7) TFR ≤ FTR

for all R : X 9 Y . This condition enables us to extend F of 3.6 along the embedding
Alg(T,V) ↪→ ProAlg(T,W) to obtain a 2-functor

F : ProAlg(T,V) → ProAlg(T,W),

which maps an object (X,A) to (X,FA) and leaves morphisms unchanged. The verifications
are as in 3.4. We obtain a commutative diagram of 2-functors:

ProAlg(T,V) F //

&&MMMMMMMMMMM
ProAlg(T,W)

xxppppppppppp

Set

Alg(T,V)
?�

OO

F

//

88qqqqqqqqqqq
Alg(T,W)

ffNNNNNNNNNNN
?�

OO
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The diagram remains commutative if the vertical embeddings are replaced by their right adjoints
Λ, provided that F : V → W preserves infima.

4.5 Algebraic functors. For a morphism j : S → T of V-admissible monads satisfying 3.5(8)
we automatically have

(8) jY (SR) ≤ (TR)jX

for all R : X 9 Y in ProMat(V). The 2-functor J : Alg(T,V) → Alg(S,V) may therefore be
extended to a 2-functor

J : ProAlg(T,V) → ProAlg(S,V)

sending (X,A) to (X,AjX) and leaving morphisms unchanged. As in 3.8, the case S = 1 =
(Id, 1, 1) with j = e is of particular importance, and with 4.3 and 4.4, we can extend the
commutative diagram obtained in 3.8, as follows:

4.6 Theorem. For every morphism F : V → W of monoidal lattices as in 1.5 and every
F -admissible Set-monad T there is a commutative diagram of 2-functors which also commutes
with the underlying Set-functors:

ProAlg(T,V) F //

J
��

ProAlg(T,W)

J

��

Alg(T,V)
' �

44jjjjjjjj
F //

J

��

Alg(T,W)
' �

44jjjjjjjj

J
��

ProAlg(1,V) F // ProAlg(1,W)

Alg(1,V) F //
' �

44jjjjjjjj
Alg(1,W)

' �
44jjjjjjjj

If the (diagonal) embeddings are replaced by their right adjoints Λ, the vertical faces remain
commutative while the top- and bottom faces commute if F preserves infima.

An example of this situation is considered in the next section.

5 Examples

5.1 Ordered sets. For V = 2 and T = 1, conditions 3.2(4′), (5′) translate into the reflexivity
and transitivity conditions for a relation a on X, and (6′) expresses preservation of the relation.
Hence, Alg(1,2) is the category Ord of preordered sets. Denoting the preorders by ≤, we see
that 3.5 puts the pointwise preorder on the hom-sets:

f ≤ g ⇔ ∀x ∈ X : f(x) ≤ g(x).

5.2 Metric spaces. For V = R+ and T = 1, the (T,V)-algebra structure a : X ×X → [0,∞]
must satisfy the conditions

a(x, x) = 0 and a(x, z) ≤ a(x, y) + a(y, z)

13



for all x, y, z ∈ X. A lax homomorphism f : (X, a) → (Y, b) is a non-expansive map:

b(f(x), f(y)) ≤ a(x, y)

for all x, y ∈ X. Hence, Alg(1,R+) is the category Met of premetric spaces (called metric spaces
in [12] and ∞pq-metric spaces in [14]). The hom-sets are preordered via 3.5 by

f ≤ g ⇔ ∀x ∈ X : b(f(x), g(x)) = 0.

The embedding E : 2 → R+ of 1.2(2) gives with 3.6 the 2-functor

E : Ord → Met

which maps (X,≤) to the premetric space (X, d) with d(x, y) = 0 if x ≤ y and d(x, y) = ∞
otherwise. The two adjoints L a E a R give adjoints L a E a R, providing a premetric space
(X, d) with the preorders given by

L : x ≤ y ⇔ d(x, y) <∞, R : x ≤ y ⇔ d(x, y) = 0.

5.3 Uniform spaces. An object in ProAlg(1,2) is a set X which comes with a down-directed
(w.r.t. ⊆) set A of relations on X which are reflexive and satisfy the transitivity condition
4.2(5′′)

∀a ∈ A ∃b ∈ A : bb ⊆ a.

(with the usual relational product, see 1.4(1)); a morphism f : (X,A) → (Y,B) satisfies the
condition

∀b ∈ B ∃a ∈ A : (f × f)(a) ⊆ b,

as 4.2(6′) and 3.3(6′) show. Hence, ProAlg(1,2) is the category ProOrd of pro-ordered sets which
is obviously equivalent to the category QUnif of quasi-uniform spaces. (A quasi-uniformity A
on X is usually required to be not just a filter base but a filter on X×X; in this paper we do not
distinguish between ProOrd and QUnif .) The preorder on the hom-sets in ProOrd is given
by

f ≤ g ⇔ ∀b ∈ B : (f × g)∆X ⊆ b,

with ∆X the diagonal in X ×X. According to 4.3, the embedding

Ord → ProOrd, (X, a) 7→ (X, {a}),

has a right adjoint Λ which preorders a quasi-uniform space (X,A) by

x ≤ y ⇔ ∀a ∈ A : (x, y) ∈ a.

5.4 Prometric spaces. An object in ProAlg(1,R+) equips a set X with an up-directed (w.r.t.
the pointwise natural order of [0,∞]-valued functions) set A of (“distance”) functions a : X ×
X → [0,∞] satisfying the conditions

∀a ∈ A ∀x ∈ X : a(x, x) = 0,

14



∀a ∈ A ∃b ∈ A ∀x, y, z ∈ X : a(x, z) ≤ b(x, y) + b(y, z);

a morphism f : (X,A) → (Y,B) satisfies

∀b ∈ B ∃a ∈ A ∀x, y ∈ X : b(f(x), f(y)) ≤ a(x, y).

The resulting category ProMet = ProAlg(1,R+) of prometric spaces contains the category
AQUnif of approach-quasi-uniform spaces as considered by Lowen and Windels [15] (which
satisfy an additional saturation condition for the structure A) as a full subcategory. Its hom-sets
are preordered by

f ≤ g ⇔ ∀b ∈ B ∀x ∈ X : b(f(x), g(x)) = 0.

The right adjoint Λ to the embedding

Met → ProMet, (X, d) 7→ (X, {d}),

provides a prometric space (X,A) with the premetric

d(x, y) := sup{a(x, y) | a ∈ A}.

E of 1.2(2) induces the 2-functor

E : ProOrd → ProMet

which equips a quasi-uniform space (X,A) with the set A = {a | a ∈ A} of distance functions
a with a(x, y) = 0 if (x, y) ∈ a and a(x, y) = ∞ otherwise. E is both a full reflective and
coreflective embedding, with adjoints L a E a R, induced by L a E a R, where L assigns
to a prometric space (X,A) the quasi-uniformity {{(x, y) | a(x, y) < ∞} | a ∈ A}, and R the
quasi-uniformity {{(x, y) | a(x, y) = 0} | a ∈ A}.

We have thus described the diagram

ProOrd

a

⊥
⊥

Λ

���
�
�
�
�

� �
E // ProMet
Loo

a Λ

���
�
�
�
�

R

oo_ _ _ _ _

Ord ⊥
⊥

� ?

OO

� �
E // Met

� ?

OO

R

oo_ _ _ _ _ _ _

Loo

which commutes with respect to both the solid and the dashed arrows.

5.5 Topological spaces. The ultrafilter functor U : Set → Set assigns to a set X the set UX
of ultrafilters on X; for f : X → Y , the map Uf : UX → UY takes an ultrafilter x on X to its
image f(x) defined by (B ∈ f(x) ⇔ f−1(B) ∈ x). Since U preserves finite coproducts, there is a
uniquely determined monad structure e, m on U (see [3]), given by

(A ∈ eX(x) ⇔ x ∈ A), (A ∈ mX(X) ⇔ A] ∈ X),

15



with A] := {x ∈ UX |A ∈ x}, for all x ∈ X, A ⊆ X, X ∈ UUX. As G. Janelidze observed, the
monad U = (U, e,m) is naturally induced by the adjunction

(BooA)op //
> Setoo

with both adjoints represented by 2, the two-element set or Boolean algebra. The lax extension
of U to U : Rel(Set) → Rel(Set) transforms r : X 9 Y into Ur : UX 9 UY defined by

x(Ur)y ⇔ ∀A ∈ x ∀B ∈ y ∃x ∈ A ∃y ∈ B : x r y

for all x ∈ UX, y ∈ UY . Briefly, the Set-monad U is 2-admissible.
A (U,2)-algebra is a set X with a relation a : UX 9 X which, when we write (x → x :⇔

x a x) and (X → x ⇔ X (Ua) x), must satisfy the reflexivity and transitivity conditions

•
x := eX(x) → x, (X → y & y → z ⇒ mX(X) → z)

for all x, z ∈ X, y ∈ UX, X ∈ UUX. These are exactly the convergence structures defining a
topology on X. Morphisms in Alg(U,2) preserve the convergence structures, i.e. are continuous
maps. Hence, Alg(U,2) is (isomorphic to) the category Top of topological spaces (see [2]). It
may be considered as a 2-category when we preorder its hom-sets by

f ≤ g ⇔ ∀x ∈ X :
•

f(x) → g(x)

⇔ ∀x ∈ X : g(x) ∈ f(x).

The unique monad morphism j = e : 1 → U induces the 2-functor

J : Top → Ord

which provides a topological space X with the “specialization order” given by (x ≤ y ⇔ •
x →

y ⇔ y ∈ x) for all x, y ∈ X. J has a left adjoint which embeds Ord as a full coreflective
subcategory into Top: it provides a preordered set (X,≤) with the topology whose open sets
are generated by the down sets ↓ x = {z ∈ X | z ≤ x}, x ∈ X.

5.6 Protopological spaces. We wish to give an easy description of the category ProAlg(U,2).
Recall that a pretopology (or Čech closure operation) on a set X is an extensive and finitely-
additive function c : PX → PX; hence, M ⊆ c(M), c(∅) = ∅, c(M ∪N) = c(M) ∪ c(N) for all
M,N ⊆ X. Pretopologies on X are ordered pointwise: c ≤ d if c(M) ⊆ d(M) for all M ⊆ X. A
protopology on X is a down-directed set C of pretopologies on X with the transitivity property

∀c ∈ C ∃d ∈ C : dd ≤ c.

Continuity of a map f : (X,C) → (Y,D) means

∀d ∈ D ∃c ∈ C ∀M ⊆ X : f(c(M)) ⊆ d(f(M)).
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This defines the category ProTop of protopological spaces which can be made into a 2-category
by

f ≤ g :⇔ ∀d ∈ D ∀x ∈ X : g(x) ∈ d({f(x)}).

In order to see that ProTop is equivalent to ProAlg(U,2) one follows the same procedure that
shows Top ∼= Alg(U,2): every pretopology c on X defines a “convergence relation” a : UX 9 X

via
x a x :⇔ ∀M ∈ x : x ∈ c(M),

which satisfies the reflexivity but not necessarily the transitivity condition; hence a is a pseudo-
topology on X. Conversely, every pseudotopology a defines a pretopology c via

x ∈ c(M) :⇔ ∃x ∈ UX (M ∈ x & x a x).

The resulting maps

{pretopologies on X}
ϕ // {pseudotopologies on X}
ψ

oo

which satisfy ψϕ = id and id ≤ ϕψ (and describe the category of pretopological spaces as a full
reflective subcategory of the category of pseudotopological spaces), have an important algebraic
property: they are homomorphisms with respect to the ordinary composition of pretopologies (as
closure operations) and to the co-Kleisli composition of pseudotopologies as introduced in 3.4:

ϕ(id) = e◦X , ϕ(cd) = ϕ(c) ∗ ϕ(d),
ψ(e◦X) = id, ψ(a ∗ b) = ψ(a)ψ(b)

(see [8] for details). This homomorphic behaviour helps to prove that φ and ψ induce a category
equivalence

ProTop
Φ // ProAlg(U,2).
Ψ

oo

The only non-trivial point is to see that, for (X,A) ∈ ProAlg(U,2), the identity map is actually
a morphism ΦΨ(X,A) → (X,A). Indeed, for every a ∈ A, we have b ∈ A with b ∗ b ≤ a; now it
is not difficult to show that every pseudotopology b satisfies φ(ψ(b)) ≤ b ∗ b.

The full embedding Top ↪→ ProTop has a left adjoint Λ which provides a protopological
space (X,C) with a topology whose Kuratowski closure operation is given by

M =
⋂
{c(M) | c ∈ C}

for all M ⊆ X. The 2-functor J : Top → Ord of 5.5 can be extended to a 2-functor

J : ProTop → ProOrd

which provides a protopological space (X,C) with the quasi-uniformity given by the sets
{(x, y) | y ∈ c({x})}, c ∈ C. J has a left adjoint which embeds ProOrd as a full reflective
subcategory into ProTop, as follows: for a quasi-uniformity A on X consider the protopology
Â = {â | a ∈ A} on X with

â(M) = {y ∈ X | ∃x ∈M : (x, y) ∈ a}
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for all M ⊆ X.
In summary, in 5.5 and 5.6 we have described the diagram

ProTop

a

⊥

Λ

���
�
�
�
�

J
// ProOrd
? _oo

a Λ

���
�
�
�
�
�

Top ⊥
?�

OO

J
// Ord

?�

OO

? _oo

which commutes with respect to the solid arrows; also, the two full embeddings Ord ↪→ ProTop
described by the diagram coincide. Let us also remark that the composite

ProOrd � � // ProTop Λ // Top

is nothing but the induced-topology functor of quasi-uniform spaces which provides a quasi-
uniform space (X,A) with the Kuratowski closure operation given by

y ∈M ⇔ ∀a ∈ A ∃x ∈M : (x, y) ∈ a.

5.7 Approach spaces. The objects of Alg(U,R+) are sets X which come with a function
a : UX ×X → [0,∞] satisfying the reflexivity and transitivity conditions

a(
•
x , x) = 0, a(mX(X), z) ≤ Ua(X, y) + a(y, z)

for all x, z ∈ X, y ∈ UX, X ∈ UUX, with

Ua(X, y) = sup inf a(x, y).
A ∈ X x ∈ A
B ∈ y y ∈ B

A morphism f : (X, a) → (Y, b) must satisfy

b(f(x), f(x)) ≤ a(x, x)

for all x ∈ X, x ∈ UX. As observed in [4, 7], this is precisely Lowen’s category of approach
spaces which becomes a 2-category via

f ≤ g ⇔ ∀x ∈ X : b(
•

f(x) , g(x)) = 0.

The monad morphism j = e : 1 → U induces the 2-functor

J : App → Met,

providing an approach space (X, a) with the premetric d given by d(x, y) = a(
•
x , y). It is the

right adjoint to the full embedding Met ↪→ App described by [14] which puts on a premetric
space (X, d) the approach structure

a(x, y) = inf
F∈x

sup
x∈F

d(x, y).
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The full reflective and coreflective embedding

E : Top ↪→ App

is also described by [14]; as observed in [7], it is induced by L a E a R although the situation is
more complicated than in 5.4. E provides a topological space X with the approach structure a
defined by a(x, x) = 0 if x converges to x, and a(x, x) = ∞ otherwise. Its right adjoint R puts on
an approach space (X, a) the topology which lets x converge to x precisely when a(x, x) = 0. But
while U is R-admissible, it fails to be L-admissible. Nevertheless, it is useful to consider for an
approach space (X, a) the adjoint (X,La) as in 3.4, which tries to let x converge to x precisely
when a(x, x) < ∞. This structure satisfies the reflexivity but not the transitivity condition for
topologies defined via convergence. In other words, (X,La) is just a pseudotopological space to
which, however, one may apply the reflector of Top ↪→ PsTop to obtain the topological space
L̂(X, a). The resulting functor L̂ is left adjoint to E, as observed in [7].

Incidently, the reflector PsTop → Top is obtained by iterating the endofunctor (X, b) 7→
(X, b ∗ b) transfinitely (see [4]), another useful application of the co-Kleisli composition 3.4.

We have thus described the diagram below which commutes with respect to both the solid
and the dotted arrows, but not the dashed arrows; also, the two full embeddings Ord ↪→ App
described by it coincide.

Top

a

⊥
⊥

J

��

� � // App
L̂oo

a J

��

R

oo_ _ _ _ _ _ _

Ord ⊥
⊥

� ?

OO

� � // Met
� ?

OO

R

oo_ _ _ _ _ _ _

Loo

5.8 Proapproach spaces.
We call the objects (X,A) of ProAlg(U,R+) = ProApp proapproach spaces. These are

sets with an up-directed (w.r.t. the pointwise natural order of [0,∞]-valued functions) set A of
functions a : UX ×X → [0,∞] satisfying the conditions

∀a ∈ A ∀x ∈ X : a(
•
x , x) = 0,

∀a ∈ A ∃b ∈ B ∀X ∈ UUX, y ∈ UX, z ∈ X : a(mX(X), z) ≤ Ub(X, y) + b(y, z),

with
Ub(X, y) = sup inf b(x, y);

A ∈ X x ∈ A
B ∈ y y ∈ B

a morphism f : (X,A) → (Y,B) satisfies

∀b ∈ B ∃a ∈ A ∀x ∈ UX, y ∈ X : b(f(x), f(y)) ≤ a(x, y).

Its hom-sets are preordered by

f ≤ g ⇔ ∀b ∈ B ∀x ∈ X : b(
•

f(x) , g(x)) = 0.
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The right adjoint Λ to the full embedding App ↪→ ProApp provides a proapproach space (X,A)
with the approach structure given by

d(x, y) = sup {a(x, y) | a ∈ A}.

The 2-functor J : (X,A) 7→ (X, {a(eX × 1X) | a ∈ A}) is right adjoint to the full embedding

ProMet ↪→ ProApp

which extends the embedding Met ↪→ App “structure by structure”. This describes the com-
mutative diagram which “lifts” the diagram given in 5.6:

ProApp

a

⊥

Λ

���
�
�
�
�

J
// ProMet
? _oo

a Λ

���
�
�
�
�
�

App ⊥
?�

OO

J
// Met

?�

OO

? _oo

Finally we consider the full embedding

E : ProTop ↪→ ProApp

induced by E : 2 → [0,∞]; it extends E : Top → App, again “structure by structure”, providing
a protopological space (X,C) with the proapproach structure C̃ = {c̃ | c ∈ C}, where c̃(x, x) = 0
if x converges to x in the pretopology c, and c̃(x, x) = ∞ otherwise. Its right adjoint R defines
for a proapproach space (X,A) a protopology A∗ = {a∗ | a ∈ A} with

a∗(M) = {x ∈ X | ∃x ∈ UX (M ∈ x & a(x, x) = 0)}

for all M ⊆ X.
E also has a left adjoint L̂ whose construction we can only sketch, as follows: pseudo-

protopological spaces are sets with a down-directed set of pseudotopologies; with morphisms
as in ProAlg(U,2), they form the category PsProTop in which ProTop ' ProAlg(U,2) is
reflective. Using the definition of L as in 4.3 one obtains a functor L : ProApp → PsProTop
which, when composed with the reflector of ProTop ↪→ PsProTop, gives us L̂.

In extension of the diagrams given in 5.4 and 5.7 we obtain the following diagrams which
commute to the same extent as their predecessors:

ProTop

a

⊥
⊥

Λ

���
�
�
�
�

� � // ProApp
L̂oo

a Λ

���
�
�
�
�

R

oo_ _ _ _ _ ProTop

a

⊥
⊥

J

��

� � // ProApp
L̂oo

a J

��

R

oo_ _ _ _ _

Top ⊥
⊥

� ?

OO

� � // App
� ?

OO

R

oo_ _ _ _ _ _ _

L̂oo
ProOrd ⊥

⊥
� ?

OO

� � // ProMet
� ?

OO

R

oo_ _ _ _ _

Loo
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We also note that, in analogy to the induced-topology functor of quasi-uniform spaces, one
has the induced-approach functor of approach-uniform spaces and, more generally, of prometric
spaces, given by

ProMet � � // ProApp Λ // App.

It assigns to a prometric space (X,A) the approach structure d given by

d(x, y) = sup
a∈A

inf
F∈x

sup
x∈F

a(x, y).

6 Alg(T,V) as a topological category

6.1 Initial structures. Recall that, in order to show topologicity of the underlying Set-functor
of Alg(T,V) (with T and V as in 3.1), by definition we must, for every family (Yi, bi)i∈I of (T,V)-
algebras (with no size restriction on I) and every family (fi : X → Yi)i∈I of Set-maps, provide
a (T,V)-algebra structure a on the fixed set X (the so-called initial structure) such that, for
any (T,V)-algebra (Z, c), a Set-map h : Z → X is actually a morphism in Alg(T,V) when all
composites fih are. First we note the following simple but useful lemma.

6.2 Lemma. (1) For any morphisms ri : X 9 Y in Mat(V),

T (
∧
i

ri) ≤
∧
i

Tri.

(2) For any morphisms f : X → Y , a : TX 9 X, b : TY 9 Y in Mat(V), if fa ≤ b(Tf) one
has

(Tf)(Ta) ≤ (Tb)(T 2f).

Proof. (1) This inequality follows trivially from the fact that T preserves the preorder on the
hom-sets of Mat(V).

(2) Monotonicity of T leads from fa ≤ b(Tf) to

(Tf)(Ta) ≤ T (fa) ≤ T (b(Tf)) = (Tb)(T 2f)

when we use the fact that T preserves composition in Mat(V) strictly whenever the first factor
is a map. �

6.3 Proposition. In the notation of 6.1, the initial structure a on X can be constructed as
a =

∧
i b
∗
i , with b∗i := f◦i bi(Tfi), which, in pointwise notation, reads as

b∗i (x, y) = bi(Tfi(x), fi(y))

for all x ∈ TX, y ∈ X and i ∈ I.

Proof. 3.3(4) follows from

1X ≤
∧
i

1X ≤
∧
i

f◦i fi ≤
∧
i

f◦i bieYifi =
∧
i

f◦i bi(Tfi)eX = (
∧
i

b∗i )eX .
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In order to show (5) of 3.3, we apply Lemma 6.2 and obtain:

a(Ta) ≤ (
∧
i b
∗
i )(

∧
j Tb

∗
j )

≤
∧
i b
∗
i (Tb

∗
i )

≤
∧
i f

◦
i bi(Tfi)(Tf

◦
i )(Tbi)(T

2fi)
≤

∧
i f

◦
i bi(Tbi)(T

2fi)
≤

∧
i f

◦
i bimYi(T

2fi)
≤ (

∧
i f

◦
i bi(Tfi))mX .

Trivially, for every i ∈ I, fi : (X, a) → (Yi, bi) is a morphism in Alg(T,V). Given (Z, c) and
h : Z → X as in 6.1, such that fihc ≤ bi(Tfi)(Th) for all i ∈ I, we obtain

hc ≤
∧
i

f◦i fihc ≤
∧
i

f◦i bi(Tfi)(Th) = a(Th),

as desired. �

6.4 Theorem. For T and V as in 3.1, the forgetful functor Alg(T,V) → Set is topological,
in the sense that it admits all initial structures. It therefore admits also all final structures,
has both a left and a right adjoint, and makes Alg(T,V) a complete, cocomplete, wellpowered
and cowellpowered category with a generator and a cogenerator. Furthermore, for every monad
morphism j : S → T as in 3.5, the functor J : Alg(T,V) → Alg(S,V) has a left adjoint, and for
every lax monoidal morphism F : V → W as in 3.4, the functor F : Alg(T,V) → Alg(T,W)
has a left adjoint if F : V → W preserves infima.

Proof. Existence of initial structures was shown in 6.3 and implies existence of final structures
(defined dually, see [1]). The initial and final structures for empty families define the left- and
right adjoint of Alg(T,V) → Set, respectively (see also 3.4). Limits and colimits in Alg(T,V)
are therefore constructed by putting the initial and final structures on the limits and colimits
formed in Set, respectively. Wellpoweredness and cowellpoweredness get lifted from Set to
Alg(T,V) since every set X admits only a (small) set of structures a : TX 9 X (smallness
of V is crucial here). To obtain a generator in Alg(T,V), one applies the left adjoint of the
underlying Set-functor to a generator of Set, and proceeds dually to have a cogenerator. With
the explicit formula for the initial structures given in 6.3, it is easy to see that these are always
preserved by J , while F preserves them when F preserves infima. Consequently, in this case J
and F preserve all limits, hence have left adjoints by Freyd’s Special Adjoint Functor Theorem.

�

7 ProAlg(T,V) as a topological category

7.1 Preamble. In this section we show topologicity of the underlying Set-functor
P : ProAlg(T,V) → Set and first confirm the existence of initial structures for down-directed
structured cones. Hence, we are given a down-directed class I and a functorD : I → ProAlg(T,V)
which provides us with objects Di = (Yi, Bi) and morphisms gi,j : (Yi, Bi) → (Yj , Bj) whenever
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i ≤ j in I; furthermore, we have a cone f : ∆X → PD, i.e. a family of compatible maps
fi : X → Yi. Putting

A := {b∗i | b ∈ Bi, i ∈ I},

with b∗i defined as in 6.3 by b∗i = f◦i b(Tfi) we obtain:

7.2 Proposition. A is the initial structure on X w.r.t. (fi)i∈I .

Proof. First of all, A is in fact a (small) set since when V is small also the hom-set Mat(V)(TX,X)
is small. Next we show that A is down-directed. Since I 6= ∅, also A 6= ∅. Having b ∈ Bi, c ∈ Bj
with i, j ∈ I, we can find t ≤ i, j in I and then d ∈ Bt such that

gt,id ≤ b(Tgt,i), gt,jd ≤ c(Tgt,j).

Hence,
d∗t = f◦t d(Tft) ≤ f◦t g

◦
t,ib(Tgt,i)(Tft) = f◦i b(Tfi) = b∗i ,

and likewise d∗t ≤ c∗j .
The proof of conditions (4), (5) of 4.2 now proceeds with the same arguments as in the

proof of 6.3 and is therefore omitted; likewise the trivial verification that A does indeed have
the initiality property. �

We arrive at the following Theorem whose additional assertions are obvious.

7.3 Theorem. For T and V as in 3.1, like Alg(T,V) → Set also the forgetful functor
ProAlg(T,V) → Set is topological, and all assertions of Theorem 6.4 remain true mutatis mu-
tandis.

Proof. After Proposition 7.2 it suffices to show the existence of initial structures for finite families
(fi : X → Yi)i∈I of Set-maps with (T,V)-proalgebras (Yi, Bi). Indeed, given any such family of
arbitrary size, we obtain the initial structure on X by applying 7.2 to the cone

(fF : X → YF )F⊆I finite ,

with fF =< fi >i∈F : X → YF :=
∏
i∈F Yi.

The empty case is taken care of by the left adjoint to P which is constructed just like the
left adjoint to Alg(T,V) → Set (see 3.4). In case I = {1, 2} one lets

A := {b∗1 ∧ b∗2 | b1 ∈ B1, b2 ∈ B2},

with b∗i = f◦i bi(Tfi). Since B1 and B2 are down-directed, also A is down-directed, and all other
verifications proceed as in 6.3. �

7.4 Corollary. Each of the categories appearing in the cubic diagram of the Introduction is
topological over Set.

�
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