
LAWVERE COMPLETION AND SEPARATION VIA CLOSURE
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Dedicated to Bill Lawvere at the occasion of his seventieth birthday

A. For a quantale V, first a closure-theoretic approach to completeness and separation in V-categories
is presented. This approach is then generalized to T-categories, where T is a topological theory that entails
a set monadT and a compatibleT-algebra structure on V.

I

Bill Lawvere’s 1973 milestone paper “Metric spaces, generalized logic, and closed categories” helped
us to detect categorical structures in previously unexpected surroundings. His revolutionary idea was
not only to regard individual metric spaces as categories (enriched over the monoidal-closed category
given by the non-negative extended real half-line, with arrows provided by ≥ and tensor by +), but also
to expose the purely categorical nature of the key concept of the theory, Cauchy completeness. The first
step to this end was to disregard metric conditions that actually obscure the categorical intuition. In fact,
once one has dropped the symmetry requirement it seems much more natural to regard the metric d of a
space X as the categorical hom and, given a Cauchy sequence (an) in X, to associate with it the pair of
functions

ϕ(x) = lim d(an, x) and ψ(x) = lim d(x, an).

Lawvere’s great insight was to expose these functions as pairs of adjoint (bi)modules whose repre-
sentability as

ϕ(x) = d(a, x) and ψ(x) = d(x, a)

is facilitated precisely by a limit a for (an). Hence, a new notion of completeness for categories enriched
over any symmetric monoidal-closed category V was born. Also in the enriched category context it is
often referred to as Cauchy completeness. But since Lawvere’s brilliant notion entails no sequences at
all, just the representability requirement for bimodules, this name seems to be far-fetched and, contrary
to popular belief, was in fact not proposed in his paper. Hence, here we use L-completeness instead.

In the first part of this paper we give a quick introduction to V-category theory (see [Kel82]) in the spe-
cial case of a commutative unital quantale V, focussing on the themes of L-completion and L-separation.
We are not aware of an explicit prior occurrence of the latter notion, and both themes are treated with
the help of a new closure operator that arises most naturally in the 2-category V-Cat, as follows. Call
a V-functor m : M −→ X L-dense if f · m = g · m implies f � g for all V-functors f , g : X −→ Y;
the L-closure of a subobject M of X is then the largest subobject M of X for which M −→ M is L-
dense. For L-separated V-categories, L-dense simply means epimorphism. The L-separated reflection of
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a V-category X is its image under the Yoneda functor y : X −→ VXop
= X̂, and its L-completion is the

L-closure of that image in X̂.
The main part of the paper is devoted to a substantial generalization of the first part which, however,

without the reader’s recalling of the more familiar V-category context, may be hard to motivate, espe-
cially in view of the considerable additional “technical” difficulties. The quantale V gets augmented by
a topological theory T = (T,V, ξ) which now entails also a Set-monadT and aT-algebra structure ξ on
V, with suitable compatibility conditions (see [Hof07]). While a V-category X comes with a V-relation
a : X−→7 X (given by a function a : X × X −→ V), T-categories come with a V-relation a : T X−→7 X
making X a lax T-algebra. For T the ultrafilter monad and V = 2, T-Cat provides Barr’s [Bar70] rela-
tional description of the category of topological spaces (which, in turn, was based on Manes’ [Man69]
description of compact Hausdorff spaces); for the same monad but with V the Lawvere half-line, one
obtains Lowen’s approach spaces [Low89], as shown by Clementino and Hofmann [CH03].

The V-to-T generalization must necessarily entail the provision of a Yoneda functor for a T-category
X. But what is Xop supposed to be in this highly asymmetric context? Fortunately, this problem was
solved in [CH08]: the underlying set of Xop is T X, provided with a suitable T-structure. This structure
needs to be considered in addition to the free T-algebra structure on T X, leading to the surprising fact
that the T-equivalent of the Yoneda functor of the the familiar V-context has now two equally important
facets. Once one has fully understood this “technical” part of the general theory, it is in fact rather
straightforward to extend the V-categorical results on L-completion and L-separation to T-categories,
again with the help of the L-closure. We could therefore often keep the proofs in the T-context quite
short, especially when no new ideas beyond the initial “Yoneda investment” are needed.

Completeness of V-categories and the induced topology was also investigated by Flagg [Fla97, Fla92]
(who called them V-continuity spaces). Its generalization to (essentially) T-categories was introduced
by Clementino and Hofmann [CH08]. We also refer the reader to Burroni [Bur71], wo presented an
alternative approach to the categories of interest in this paper.

1. P

1.1. The quantale V. Throughout the paper we consider a commutative and unital quantale V = (V,⊗, k).
Hence, V is a complete lattice with a commutative binary operation ⊗ and neutral element k, such that
u ⊗ (−) preserves suprema, for all u ∈ V. Consequently, V has an “internal hom” u( (−), given by

z ≤ u( v ⇐⇒ z ⊗ u ≤ v,

for all z, u, v ∈ V. Sometimes we write v � u instead of u ( v. The quantale is trivial when V =
1; equivalently, when k = ⊥ is the bottom element of V. Non-trivial examples of quantales are the
two-element chain 2 = ({0, 1},∧, 1), the extended positive half-line P

+
= ([0,∞]op,+, 0), and Pmax =

([0,∞]op,max, 0); here [0,∞]op = ([0,∞],≥), with the natural ≥. (We will use
∨

,
∧

to denote suprema,
infima in V, but use sup, inf, max, etc. when we work in [0,∞] and refer to the natural order ≤.)

1.2. V-relations. The category V-Rel has sets as objects, and a morphism r : X−→7 Y is simply a function
r : X × Y −→ V; its composite with s : Y−→7 Z is given by

s · r(x, z) =
∨
y∈Y

r(x, y) ⊗ s(y, z).

There is a functor

Set −→ V-Rel
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which maps objects identically and interprets a map f : X −→ Y as a V-relation f◦ : X−→7 Y:

f◦(x, y) =

k if f (x) = y,

⊥ otherwise;

we normally write f instead of f◦. The functor is faithful precisely when k > ⊥. The hom-sets of
V-Rel carry the pointwise order of V, so that V-Rel becomes an ordered category. In fact, V-Rel is
Sup-enriched (with Sup the category if complete lattices and suprema-preserving maps), hence it is a
quantaloid. Consequently, for every r : X−→7 Y , composition by r in V-Rel from either side has a right
adjoint, given by extensions and liftings respectively:

(−) · r a (−)� r r · (−) a r � (−)

t · r ≤ s r · t ≤ s

t ≤ s� r t ≤ r � s

X

�
??

??
s

��?
??

?_r
��

Y
≤

�
t

// Z

Y

X

_r

OO

≤

Z

�????
s

__????

�
t

oo

s� r(y, z) =
∧
x∈X

s(x, z)� r(x, y) r � s(z, x) =
∧
y∈Y

r(x, y)( s(z, y)

V-Rel has a contravariant involution

(V-Rel)op −→ V-Rel

which maps objects identically and assigns to r : X−→7 Y its opposite relation r◦ : Y−→7 X. When applied
to a map f = f◦, one obtains f a f ◦ in the 2-category V-Rel.

1.3. V-categories. A V-category X = (X, a) is a set X with a V-relation a : X−→7 X satisfying 1X ≤ a,
a · a ≤ a; equivalently,

k ≤ a(x, x), a(x, y) ⊗ a(y, z) ≤ a(x, z)

for all x, y, z ∈ X. A V-functor f : (X, a) −→ (Y, b) must satisfy f · a ≤ b · f ; equivalently,

a(x, y) ≤ b( f (x), f (y))

for all x, y ∈ X. The resulting category V-Cat is the category Ord of (pre)ordered sets if V = 2, Lawvere’s
category Met of (pre)metric spaces if V = P

+
(see [Law73]), and the category UMet of (pre)ultrametric

spaces if V = Pmax . For the trivial quantale one has 1-Cat = Set. Furthermore, V = (V,() with its
internal hom becomes a V-category.

V-Cat is a symmetric monoidal closed category, with tensor product

(X, a) ⊗ (Y, b) = (X × Y, a ⊗ b), a ⊗ b((x, y), (x′, y′)) = a(x, x′) ⊗ b(y, y′),

and internal hom

(X, a)( (Y, b) = (V-Cat(X,Y), [a, b]), [a, b]( f , g) =
∧
x∈X

b( f (x), g(x)).

The ⊗-neutral object is E = (E, k) (with a singleton set E), which generally must be distinguished from
the terminal object 1 = (1,>) in V-Cat. The internal hom describes the pointwise order if V = 2, and the
usual sup-metric if V = P

+
or V = Pmax .
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1.4. V-modules. The category V-Mod has V-categories as objects, and a morphism ϕ : (X, a)−→◦ (Y, b) is
a V-relation ϕ : X−→7 Y with ϕ ·a ≤ ϕ and b ·ϕ ≤ ϕ. Since always ϕ = ϕ ·1X ≤ ϕ ·a and ϕ = 1Y ·ϕ ≤ b ·ϕ,
one actually has ϕ ·a = ϕ and b ·ϕ = ϕ for a V-module ϕ : X−→◦ Y . In particular, the V-module a : X−→◦ X
assumes the role of the identity morphism on X in V-Mod, and we write a = 1∗X , in order not to confuse
it with 1X in V-Cat. This notation is extended to arbitrary maps f : X −→ Y by

f∗ = b · f and f ∗ = f ◦ · b,

and one easily verifies:

Lemma 1.1. The following are equivalent for a map f : X −→ Y between V-categories X and Y:

(i) f : X −→ Y is a V-functor.
(ii) f∗ is a V-module f∗ : X−→◦ Y.

(iii) f ∗ is a V-module f ∗ : Y−→◦ X.

Hence there are functors which make the following diagram commute.

V-Cat
(−)∗ // V-Mod (V-Cat)op(−)∗oo

Set

OO

(−)◦
// V-Rel

OO

Setop
(−)◦

oo

OO

Here the vertical full embeddings are given by X 7−→ (X, 1X). Just like V-Rel also V-Mod is a quantaloid,
with the same pointwise order structure. But not just suprema of V-modules formed in V-Rel are again V-
modules, also extensions and liftings. For example, for ϕ : (X, a)−→◦ (Y, b), ψ : (Z, c)−→◦ (Y, b), the lifting
ϕ� ψ formed in V-Rel is indeed a V-module ϕ� ψ : (Z, c)−→◦ (Y, b): from ψ ·c ≤ ψ and ϕ · (ϕ� ψ) ≤ ψ
one obtains ϕ · (ϕ � ψ) · c ≤ ψ and then (ϕ � ψ) · c ≤ ϕ � ψ; similarly a · (ϕ � ψ) ≤ ϕ � ψ. Also
the contravariant involution of V-Rel extends to V-Mod (e.g., if ϕ : X−→◦ Y , then ϕ : Xop−→◦ Yop, where
Xop = (X, a◦) is the usual opposite V-category), and one has the commutative diagram

(V-Mod)op (−)op
// V-Mod

V-Cat
(−)op

//

(−)∗
OO

V-Cat.

(−)∗

OO

As a quantaloid, V-Mod is in particular a 2-category, and for all f : X −→ Y in V-Cat one has

f∗ a f ∗

in V-Mod. V-Cat inherits its 2-categorical structure from V-Mod via

f ≤ f ′ :⇐⇒ f ∗ ≤ ( f ′)∗ ⇐⇒ ∀x ∈ X, y ∈ Y . b(y, f (x)) ≤ b(y, f ′(x))

⇐⇒ f ′∗ ≤ f∗ ⇐⇒ ∀x ∈ X, y ∈ Y . b( f ′(x), y) ≤ b( f (x), y)

⇐⇒ 1∗X ≤ ( f ′)∗ · f∗ ⇐⇒ ∀x ∈ X . k ≤ b( f (x), f ′(x)).

Hence, the previous diagram actually shows commuting 2-functors when we add dualization w.r.t. 2-cells
(indicated by co) appropriately:

(V-Mod)op (−)op
// V-Mod

V-Cat
(−)op

//

(−)∗
OO

V-Catco

(−)∗

OO
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Of course, V-Cat being a 2-category, there is also a notion of adjointness in V-Cat:

f a g in V-Cat ⇐⇒ f · g ≤ 1 and 1 ≤ g · f in V-Cat

⇐⇒ g∗ · f ∗ ≤ 1∗ and 1∗ ≤ f ∗ · g∗ in V-Mod

⇐⇒ g∗ a f ∗ in V-Mod

⇐⇒ f∗ = g∗ (since f∗ a f ∗ in V-Mod)

⇐⇒ ∀x ∈ X, y ∈ Y . a(x, g(y)) = b( f (x), y).

1.5. Yoneda. V-modules give rise to V-functors, as follows.

Proposition 1.2. The following are equivalent for V-relations ϕ : X−→7 Y between V-categories:

(i) ϕ : X−→◦ Y is a V-module.
(ii) ϕ : Xop ⊗ Y −→ V is a V-functor.

With ϕ = a = 1∗X : X−→◦ X we obtain in particular the V-functor a : Xop ⊗ X −→ V whose mate paq is
the Yoneda-V-functor

y : X −→ X̂ := (Xop ( V), x 7−→ a(−, x).

The structure â of X̂ is given by
â( f , f ′) =

∧
x∈X

f (x)( f ′(x).

Lemma 1.3. For all x ∈ X and f ∈ X̂, â(y(x), f ) = f (x).

One calls a V-functor f : (X, a) −→ (Y, b) fully faithful if a(x, x′) = b( f (x), f (x′)) for all x, x′ ∈ X;
equivalently, if 1∗X = f ∗ · f∗ (since f ∗ · f∗ = f ◦ · b · f ), or just 1∗X ≥ f ∗ · f∗ (since the other inequality
comes for free).

Corollary 1.4. y : X −→ X̂ is fully faithful.

1.6. L-separation. For V-functors f , g : Z −→ X we write f � g if f ≤ g and g ≤ f ; equivalently, if
f ∗ = g∗, or f∗ = g∗. We call X L-separated if f � g implies f = g, for all f , g : Z −→ X. The full
subcategory of V-Cat consisting of all L-separated V-categories is denoted by V-Catsep. Obviously, it
suffices to consider Z = E (the ⊗-neutral object) here: writing x : E −→ X in V-Cat instead of x ∈ X, we
just note that f∗ = g∗ implies

( f · x)∗ = f∗ · x∗ = g∗ · x∗ = (g · x)∗.

This proves the equivalence of (i),(ii) of the following proposition.

Proposition 1.5. The following statements are equivalent for a V-category X = (X, a).

(i) X is L-separated.
(ii) x � y implies x = y, for all x, y ∈ X.

(iii) For all x, y ∈ X, if a(x, y) ≥ k and a(y, x) ≥ k, then x = y.
(iv) The Yoneda functor y : X −→ X̂ is injective.

Proof. For (ii)⇐⇒ (iii)⇐⇒ (iv) one observes

y(x) = y(y) ⇐⇒ x◦ · a = y◦ · a

⇐⇒ x∗ = y∗

⇐⇒ x ≤ y and y ≤ x

⇐⇒ k ≤ a(x, y) and k ≤ a(y, x). �
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Corollary 1.6. The V-category V is L-separated. For all V-categories X, Y, if Y is L-separated, X ( Y
is also L-separated. In particular, X̂ is L-separated, for every X.

Proof. k ≤ u( v and k ≤ v( u means u ≤ v and v ≤ u in V, hence u = v. For Y = (Y, b) and X = (X, a),
k ≤ [a, b]( f , g) in X ( Y means k ≤ b( f (x), g(x)) for all x ∈ X, which makes the second statement
obvious. �

1.7. L-completeness. Following Lawvere [Law73] we call a V-category X L-complete if every adjunc-
tion ϕ a ψ : X−→◦ Z in V-Mod is of the form f∗ a f ∗, for a V-functor f : Z −→ X. Clearly, if X is
L-separated, such a presentation is unique. As in 1.6, it suffices to consider Z = E here; but we need the
Axiom of Choice for that.

Proposition 1.7. The following statements are equivalent for a V-category X.

(i) X is L-complete.
(ii) Each left adjoint V-module ϕ : E−→◦ X is of the form ϕ = x∗ for some x in X.

(iii) Each right adjoint V-module ψ : X−→◦ E is of the form ψ = x∗ for some x in X.

Elements in X̂ are V-functors Xop � Xop ⊗ E −→ V which, by Proposition 1.2, may be considered as
V-modules ψ : X−→◦ E. Suppose such a V-module has a left adjoint ϕ : E−→◦ X. From ϕ · ψ ≤ 1∗X one
obtains ϕ ≤ 1∗X � ψ (see 1.2), and from (1∗X � ψ) · ψ ≤ 1∗X and ψ · ϕ ≥ 1∗E one has 1∗X � ψ ≤ ϕ. Hence,
if ψ is right adjoint, its left adjoint must necessarily be 1∗X � ψ; moreover (1∗X � ψ) · ψ ≤ 1∗X always
holds. Therefore:

Proposition 1.8. A V-module ψ : X−→◦ E (with X = (X, a)) is right adjoint if, and only if, 1∗E ≤ ψ · (1
∗
X �

ψ), that is, if

(∗) k ≤
∨
y∈X

ψ(y) ⊗

∧
x∈X

a(x, y)� ψ(x)

 .
Note that

∧
x∈X a(x, y)� ψ(x) = â(ψ, y(y)). We call a V-functor ψ : Xop −→ V tight ([Tho07]) if, as a

V-module X−→◦ E, it is right adjoint, that is, if it satisfies (∗). We consider

X̃ = {ψ ∈ X̂ | ψ tight}

as a full V-subcategory of X̂. Our goal is to exhibit X̃ as an “L-completion” of X.

Examples 1.9. (1) V = 2. A V-functor Xop −→ 2 is the characteristic function of a down-closed set A in
the (pre)ordered set X. Condition (∗) then reads as

∃y ∈ A∀x ∈ A . x ≤ y,

so that A = ↓y. In other words, X̃ is simply the image of the Yoneda functor y : X −→ X̂, y 7−→ ↓y.
(2) V = P

+
. A tight V-functor Xop −→ V is given by a function ψ : X −→ [0,∞] with

ψ(y) ≤ ψ(x) ⇒ ψ(x) − ψ(y) ≤ a(x, y) (x, y ∈ X),

inf
y∈X

(ψ(y) + sup
x∈X,

ψ(x)≤a(x,y)

(a(x, y) − ψ(x))) = 0,

here a is the metric on X. If a is symmetric (so that a = a◦), these conditions are more conveniently
described as

|ψ(x) − ψ(y)| ≤ a(x, y) ≤ ψ(x) + ψ(y) (x, y ∈ X),

inf
x∈X

ψ(x) = 0.
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These are precisely the supertight maps on X considered in [LS00], where the reader finds the necessary
details.
(3) V = Pmax . Here the two conditions of (2) change to

ψ(y) < ψ(x) ⇒ ψ(x) ≤ a(x, y) (x, y ∈ X),

inf
y∈Y

(max(ψ(y), sup
x∈X,

ψ(x)<a(x,y)

(a(x, y)))) = 0.

1.8. L-injectivity. A V-functor f : (X, a) −→ (Y, b) is called L-dense if f∗ · f ∗ = 1∗Y ; that is, if b =
b · f · f ◦ · b, or

b(y, y′) =
∨
x∈X

b(y, f (x)) ⊗ b( f (x), y′)

for all y, y′ ∈ Y . L-dense V-functors have good composition-cancellation properties.

Lemma 1.10. Let f : X −→ Y and g : Y −→ Z be V-functors. Then the following assertions hold:

(1) f , g L-dense⇒ g · f L-dense.
(2) g · f L-dense⇒ g L-dense.
(3) g · f L-dense, g fully faithful⇒ f L-dense.
(4) g · f fully faithful, f L-dense⇒ g fully faithful.

A fully faithful L-dense V-functor is an L-equivalence. Hence, f is an L-equivalence if, and only if,
f∗ (or f ∗) is an isomorphism in V-Mod. A V-category Z is pseudo-injective if, for every fully faithful
V-functor f : X −→ Y and for all V-functors h : X −→ Z there is a V-functor g : Y −→ Z with g · f � h;
if strict equality is obtainable, we call Z injective. Z is L-injective if this extension property is required
only for L-equivalences f . Hence, injectivity implies pseudo-injectivity, and every pseudo-injective V-
category is also L-injective.

Lemma 1.11. The V-category V is injective, hence in particular L-injective.

Proof. Let f : X −→ Y be fully faithful and ϕ : X −→ V be any V-functor. Then the V-module ϕ : E−→◦ X
factors as ϕ = f ∗ · ψ, with ψ = f∗ · ϕ. But the V-module f ∗ · ψ corresponds to the V-functor ψ · f , hence
ψ · f = ϕ.

V

X
f

//

ϕ
??�������
Y

ψ

OO Y ◦
f ∗

// X

E

◦ψ= f∗·ϕ

OO

◦���� ϕ

??����

�

Note that the V-functor ψ has been constructed effectively, with

ψ(y) =
∨
x∈X

ϕ(x) ⊗ b( f (x), y).

In case V = 2, this means

ψ(y) = > ⇐⇒ ∃x ∈ X . (ϕ(x) = > and f (x) ≤ y),

and for V = P
+

we have
ψ(y) = inf

x∈X
(ϕ(x) + b( f (x), y)).

Proposition 1.12. For all V-categories X, Y, if Y is pseudo-injective or L-injective, X ( Y has the
respective property. In particular, X̂ is injective.
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Proof. Let f : A −→ B be a fully faithful, and consider any V-functor ϕ : A −→ (X ( Y), with Y pseudo-
injective. Since f ⊗1X is fully faithful, the mate xϕy : A⊗X −→ Y factors (up to �) as xϕy � xψy ·( f ⊗1X),
with xψy : B⊗X −→ Y corresponding to a V-functor ψ : B −→ (X ( Y). Since xψy · ( f ⊗1X) corresponds
to ψ · f , ϕ � ψ · f follows. The proof works mutatis mutandis for L-injectivity. �

Our goal is to show that L-injectivity and L-completeness are equivalent properties.

2. L-

2.1. L-dense V-functors. We first show that L-dense V-functors are characterized as “epimorphisms up
to �”.

Proposition 2.1. A V-functor m : M −→ X is L-dense if, and only if, for all V-functors f , g : X −→ Y
with f · m = g · m one has f � g.

Proof. The necessity of the condition is clear since from f∗ · m∗ = g∗ · m∗ one obtains f∗ = g∗ when
m∗ · m∗ = 1∗X . To show the converse implication, by Lemma 1.10 we may assume that m is a full
embedding M ↪→ X and consider its cokernel pair

(X, a)
f

//
g

// (Y, b),

given by the disjoint union

Y = { f (x) = g(x) | x ∈ M} ∪ { f (x) | x ∈ X \ M} ∪ {g(x) | x ∈ X \ M},

where both f and g are full embeddings, and

b( f (x), g(y)) =
∨
z∈Z

a(x, z) ⊗ a(z, y)

for all y, x ∈ X \ M. Since f∗ = g∗ by hypothesis, we obtain

a(x, y) = b(g(x), g(y)) = b( f (x), g(y)) = m∗ · m∗(x, y)

for all x, y ∈ X \ M. But this identity holds trivially when x ∈ M or y ∈ M. Hence m∗ · m∗ = 1∗X . �

Since f � g precisely when f · x � g · x for all x ∈ X (considered as x : E −→ X), it is now easy to
identify the largest subset of X which contains M as an L-dense subset.

2.2. L-closure. For a V-category X and M ⊆ X, we define the L-closure of M in X by

M = {x ∈ X | ∀ f , g : X −→ Y . ( f |M = g|M ⇒ f · x � g · x)}

and prove:

Proposition 2.2. Let X = (X, a) be a V-category, M ⊆ X and x ∈ X. Then the following assertions are
equivalent.

(i) x ∈ M.
(ii) a(x, x) ≤

∨
y∈M a(x, y) ⊗ a(y, x).

(iii) k ≤
∨

y∈M a(x, y) ⊗ a(y, x).
(iv) 1∗E ≤ x∗ · m∗ · m∗ · x∗, where m denotes the full embedding m : M ↪→ X.
(v) m∗ · x∗ a x∗ · m∗.

(vi) x∗ : E−→◦ X factors through m∗ : M−→◦ X by a map ϕ : E−→◦ M in V-Mod.
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Proof. (i)⇒(ii) follows from the L-density of M ↪→ M. (ii)⇒(iii) is clear since k ≤ a(x, x). To see
(iii)⇒(iv), just observe

x∗ · m∗ · m∗ · x∗(?,?) =
∨
y∈M

a(x, y) ⊗ a(y, x).

The second inequality needed for the adjunction (v) comes for free: m∗ · x∗ · x∗ · m∗ ≤ m∗ · m∗ = 1∗M.
Hence,(iv)⇒(v)follows. Assuming (v), we have m∗ · m∗ · x∗ a x∗ · m∗ · x∗ as well as m∗ · m∗ · x∗ ≤ x∗
and x∗ · m∗ · x∗ ≤ x∗, which implies m∗ · m∗ · x∗ = x∗. This shows (v)⇒(vi). Finally, assume (vi) and let
f , g : X −→ Y with f |M = g|M. Then

f∗ · x∗ = f∗ · m∗ · ϕ = g∗ · m∗ · ϕ = g∗ · x∗,

which proves (i). �

V-functors respect the L-closure, as we show next.

Proposition 2.3. For a V-functor f : X −→ Y and M,M′ ⊆ X, N ⊆ Y, we have:

(1) M ⊆ M and M ⊆ M′ implies M ⊆ M′.

(2) ∅ = ∅ and M = M.
(3) f (M) ⊆ f (M) and f −1(N) ⊇ f −1(N).
(4) If k is ∨-irreducible (so that k ≤ u ∨ v implies k ≤ u or k ≤ v), then M ∪ M′ = M ∪ M′.

Proof. (1), (2) are obvious. For (3), applying Lemma 1.10 to

M //
��

��

f (M)
��

��

M // f (M)

one sees that f (M) −→ f (M) is L-dense, hence f (M) ⊆ f (M). With M = f −1(N), this implies f −1(N) ⊆
f −1(N). To see (4), we just need to show that x ∈ M ∪ M′ implies x ∈ M or x ∈ M′. But this follows
from

k ≤
∨

y∈M∪M′
a(x, y) ⊗ a(y, x) =

∨
y∈M

a(x, y) ⊗ a(y, x)

 ∨
∨

y∈M′
a(x, y) ⊗ a(y, x)

 ,
assuming that k is ∨-irreducible. �

Corollary 2.4. If k is ∨-irreducible in V, then the L-closure operator defines a topology on X such that
every V-functor becomes continuous. Hence, L-closure defines a functor L : V-Cat −→ Top.

Examples 2.5. (1) For X = (X,≤) in 2-Cat = Ord and M ⊆ X, one has x ∈ M precisely when
x ≤ z ≤ x for some z ∈ M. Also, M ⊆ X is open in LX if every x ∈ M satisfies

∀z ∈ X . (x ≤ z ≤ x ⇒ z ∈ M).

(2) In Met, M = {x ∈ X = (X, a) | infz∈M(a(x, z) + a(z, x)) = 0}, and in UMet

M = {x ∈ X = (X, a) | inf
z∈M

(max(a(x, z), a(z, x))) = 0}

, which for symmetric (ultra)metric spaces describes the ordinary topological closure.
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2.3. L-separatedness via L-closure.

Proposition 2.6. Let X = (X, a) be a V-category and ∆ ⊆ X × X the diagonal. Then

∆ = {(x, y) ∈ X × X | x � y}.

Proof. Let first (x, y) ∈ ∆. With π1, π2 : X × X −→ X denoting the projection maps, we have π1|∆ = π2|∆

and therefore x = π1(x, y) � π2(x, y) = y. Assume now x � y. Note that the canonical functor V-Cat −→
Ord preserves products, hence

(x1, y1) � (x2, y2) ⇐⇒ x1 � x2 and y1 � y2,

for all (x1, y1), (x2, y2) ∈ X × X. Therefore we have (x, y) � (x, x). Let now f , g : X × X −→ Y be
V-functors with f |∆ = g|∆. Then f (x, y) � f (x, x) = g(x, x) � g(x, y). �

Corollary 2.7. A V-category X is L-separated if and only if the diagonal ∆ is closed in X × X.

Theorem 2.8. V-Catsep is an epi-reflective subcategory of V-Cat, where the reflection map is given by
y X : X −→ y X(X), for each V-category X. Hence, limits of L-separated V-categories are formed in V-Cat,
while colimits are obtained by reflecting the colimit formed in V-Cat. The epimorphisms in V-Catsep are
precisely the L-dense V-functors.

2.4. L-completeness via L-closure.

Lemma 2.9. Let X = (X, a) be a V-category and M ⊆ X.

(1) Assume that X is L-complete and M is L-closed. Then M is L-complete.
(2) Assume that X is L-separated and M is L-complete. Then M is L-closed.

Proof. (1) follows immediately from Proposition 2.2. To see (2), let x ∈ X be such that m∗ · x∗ a x∗ · m∗.
Since M is L-complete, there is some y ∈ M such that y∗ = m∗ · x∗ and y∗ = x∗ · m∗. Hence m(y)∗ =
m∗ · y∗ ≤ x∗ and m(y)∗ = y∗ · m∗ ≤ x∗ and therefore, m(y)∗ = x∗. L-separation of X gives now m(y) = x,
i.e. x ∈ M. �

Theorem 2.10. Let X = (X, b) be a V-category. The following assertions are equivalent.

(i) X is L-complete.
(ii) X is L-injective.

(iii) y : X −→ X̃ has a pseudo left-inverse V-functor R : X̃ −→ X, i.e. R · y � 1X .

Proof. To see (i)⇒(ii), let i : A −→ B be a fully faithful dense V-functor and f : A −→ X be a V-functor.
Since i∗ a i∗ is actually an equivalence of V-modules, we have f∗ · i∗ a i∗ · f ∗. Hence, since X is L-
complete, there is a V-functor g : B −→ X such that g∗ = f∗ · i∗, hence g∗ · i∗ = f∗.
The implication (ii)⇒(iii) is surely true since y : X −→ X̃ is L-dense and fully faithful.
Finally, to see (iii)⇒(i), let R : X̃ −→ X be a left inverse of y : X −→ X̃. Then y ·R = 1X̃ since
y : X −→ X̃ is dense and X̃ is L-separated. Hence, for each right adjoint V-module ψ : X −⇀◦ E, we have
ψ = R(ψ)∗. �

Proposition 2.11. For a V-category X, as a set X̃ (see 1.7) coincides with the L-closure of y(X) in X̂.
Hence, y : X −→ X̃ is fully faithful and L-dense, and X̃ is L-complete.

Proof. By Proposition 2.2, a V-functor ψ : Xop −→ V lies in the L-closure of y(X) in X̂ if, and only if,

k ≤
∨
y∈X

â(ψ, y(y)) ⊗ â(y(y), ψ).

Since â(y(y), ψ) = ψ(y) by Lemma 1.3, this means precisely that ψ must be tight. �
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Theorem 2.12. The full subcategory V-Catcpl of V-Catsep of L-complete V-categories is an epi-reflective
subcategory of V-Catsep. The reflection map of a L-separated V-category X is given by any L-dense
embedding of X into a L-complete and L-separated V-category, for instance by y : X −→ X̃.

3. T T-

3.1. The theory T. From now on we assume that the quantale V is part of a strict topological theory
T = (T,V, ξ) as introduced in [Hof07]. Here T = (T, e,m) is a Set-monad where T and m satisfy (BC)
(that is, T sends pullbacks to weak pullbacks and each naturality square of m is a weak pullback) and
ξ : TV −→ V is a map such that

1V = ξ · eV, ξ · Tξ = ξ · mV,

the diagrams

T (V × V)
T (⊗) //

〈ξ·Tπ1,ξ·Tπ2〉

��

TV

ξ

��
V × V

⊗
// V,

T1

!
��

Tk // TV

ξ

��
1

k
// V,

commute and

(ξX )X : PV −→ PVT is a natural transformation, where PV is the V-powerset functor considered as
a functor from Set to Ord and the X-component ξX : PV(X) −→ PVT (X) is given by ϕ 7−→ ξ ·Tϕ.

Explicitly, PV(X) = VX , and for a function f : X −→ Y we have a canonical map f −1 : VY −→

VX , ϕ 7−→ ϕ · f . Now PV( f ) is defined as the left adjoint to f −1, explicitly, for ϕ ∈ VX we have
PV(ϕ)(y) =

∨
x∈ f −1(y) ϕ(x). Furthermore, we assume T1 = 1.

Examples 3.1. (1) For each quantale V, (1,V, 1V) is a strict topological theory, where 1 = (Id, 1, 1)
denotes the identity monad.

(2) U2 = (U, 2, ξ2) is a strict topological theory, where U = (U, e,m) denotes the ultrafilter monad
and ξ2 is essentially the identity map.

(3) UP+ = (U,P
+
, ξP+ ) is a strict topological theory, where

ξP+ : UP
+
−→ P

+
, x 7−→ inf{v ∈ P

+
| [0, v] ∈ x}.

As shown in [Hof07, Lemma 3.2], the right adjoint ( of the tensor product ⊗ in V is automatically
compatible with the map ξ : TV −→ V in the sense that

ξ · T (() ≤( ·〈ξ · Tπ1, ξ · Tπ2〉.

T (V × V)
T (() //

〈ξ·Tπ1,ξ·Tπ2〉

��
≥

TV

ξ

��
V × V (

// V

Furthermore, our condition T1 = 1 implies m◦X · eX = eT X · eX for each set X. In fact, m◦X · eX ≥ eT X · eX

is true for each monad since m◦X ≥ eT X . Let now X ∈ TT X and x ∈ X such that mX(X) = eX(x). We
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consider the commutative diagram

TT1

m1

��

TT x // TT X

mX

��
T1

T x
// T X,

where x : 1 −→ X. Since m satisfies (BC), there is some Y ∈ TT1 = 1 with TT x(Y) = X, that is,
X = eT X · eX(x).

The functor T : Set −→ Set can be extended to a 2-functor Tξ : V-Rel −→ V-Rel as follows. Given a
V-relation r : X × Y −→ V, we define Tξr : T X × TY −→ V as the left Kan-extension

T (X × Y)
can //

ξX×Y (r)=ξ·Tr
##HHHHHHHHH T X × TY

T
ξ
r

{{
V

in Ord (where T X, TY , T (X×Y) are discrete), i.e. the smallest (order-preserving) map s : T X×TY −→ V
such that ξ · Tr ≤ s · can. Elementwise one has

Tξr(x, y) =
∨{

ξ · Tr(w)
∣∣∣∣ w ∈ T (X × Y),Tπ1(w) = x,Tπ2(w) = y

}
for each x ∈ T X and y ∈ TY . We obtain now the following properties.

Proposition 3.2 ([Hof07]). The following assertions hold:

(1) For each V-matrix r : X−→7 Y, Tξ (r
◦) = Tξ (r)◦ (and we write Tξr

◦).
(2) For each function f : X −→ Y, T f = Tξ f (and therefore also T f ◦ = Tξ f ◦).
(3) eY · r ≤ Tξr · eX for all r : X−→7 Y in V-Rel.
(4) mY · T 2

ξ
r = Tξr · mX for all r : X−→7 Y in V-Rel.

3.2. T-relations. We define a T-relation from X to Y to be a V-relation of the form a : T X−→7 Y , and
write a : X −⇀7 Y . Given also b : Y −⇀7 Z, the composite b ◦ a : X −⇀7 Z is given by the Kleisli
convolution

b ◦ a = b · Tξa · m
◦
X .

Composition of T-relations is associative, and for each T-matrix a : X −⇀7 Y we have a ◦ e◦X = a and
e◦Y ◦ a ≥ a, hence e◦X : X −⇀7 X is a lax identity. We call a T-relation a : X −⇀7 Y unitary if e◦Y ◦ a = a,
so that e◦X : X −⇀7 X is the identity on X in the category T-URel of sets and unitary T-relations, with the
Kleisli convolution as composition. The hom-sets of T-URel inherit the order-structure from V-Rel , and
composition of (unitary) T-relations respects this order in both variables. Many notions and arguments
can be transported from the V-setting to the T-setting by substituting relational composition by Kleisli
convolution.

Given a T-relation c : X −⇀7 Z, the composition by c from the right side has a right adjoint but
composition by c from the left side in general not. Explicitly, given also b : X −⇀7 Y , we pass from

X �b /

_c
�

Y

Z

to T X �b //

_m◦X
��

Y

TT X
_T

ξ
c

��
TZ

in T-URel in V-Rel
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and define the extension b� c : Z −⇀7 Y as b� (Tξc · m
◦
X) : TZ−→7 Y .

3.3. T-categories. A T-category X = (X, a) is a set X equipped with a T-relation a : X −⇀7 X satisfying
e◦X ≤ a and a ◦ a ≤ a; equivalently,

k ≤ a(eX(x), x), Tξa(X, x) ⊗ a(x, x) ≤ a(x, x)

for all X ∈ TT X, x ∈ T X and x ∈ X. A T-functor f : (X, a) −→ (Y, b) must satisfy f · a ≤ b · T f , which
in pointwise notation reads as

a(x, x) ≤ b(T f (x), f (x))

for all x ∈ T X and x ∈ X. The resulting category of T-categories and T-functors is denoted by T-Cat
(see also [CH03, CT03, CHT04]). Note that the quantale V becomes in a natural way a T-category
V = (V, homξ) where homξ : TV × V −→ V, (v, v) 7−→ (ξ(v)( v).

Examples 3.3. (1) For each quantale V, IV-categories are precisely V-categories and IV-functors are
V-functors.

(2) The main result of [Bar70] states that U2-Cat is isomorphic to the category Top of topological
spaces. The U2-category V = 2 is the Sierpinski space with {0} open and {1} closed. In [CH03]
it is shown that UP+-Cat is isomorphic to the category App of approach spaces (see [Low97] for
more details about App).

A T-category X = (X, a) can also be thought of as a lax Eilenberg–Moore algebra, since the two
conditions above can be equivalently expressed as

1X ≤ a · eX , a · Tξa ≤ a · mX .

As a consequence, each T-algebra (X, α) can be considered as a T-category by simply regarding the
function α : T X −→ X as a T-relation α : X −⇀7 X. The free Eilenberg-Moore algebra (T X,mX) –
viewed as a T-category – is denoted by |X|.

Every T-category X = (X, a) has an underlying V-category SX = (X, a · eX). Indeed, this defines a
functor S : T-Cat −→ V-Cat which has a left adjoint A : V-Cat −→ T-Cat defined by AX = (X, e◦X · Tξr),
for each V-category X = (X, r). There is yet another interesting functor connecting T-categories and V-
categories, namely M : T-Cat −→ V-Cat which sends a T-category (X, a) to the V-category (T X,Tξa·m

◦
X).

The dual T-category Xop (see [CH08]) of a T-category X = (X, a) is then defined as

Xop = A(M(X)op).

Examples 3.4. For T = U the ultrafilter monad, the topology on |X| can be described via the Zariski-
closure:

x ∈ cl(A) ⇐⇒ x ⊇
⋂
A ⇐⇒ x ⊆

⋃
A,

for x ∈ UX and A ⊆ UX. Furthermore, for X ∈ U2-Cat � Top, M(X) = (UX,≤) is the (pre)ordered set
where

x ≤ y ⇐⇒ ∀A ∈ x . A ∈ y

for x, y ∈ UX. Then Xop is the Alexandroff space induced by the dual order ≥. If X ∈ UP+ -Cat � App is
an approach space with distance function dist : PX × X −→ P

+
, then M(X) = (UX, d) is the (generalized)

metric space with

d(x, y) = inf{ε ∈ [0,∞] | ∀A ∈ x . A
(ε)
∈ y},

where x, y ∈ UX and A
(ε)
= {x ∈ X | dist(A, x) ≤ ε}.
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The tensor product of V can be transported to T-Cat by putting (X, a) ⊗ (Y, b) = (X × Y, c) with

c(w, (x, y)) = a(x, x) ⊗ b(y, y),

where w ∈ T (X × Y), x ∈ X, y ∈ Y , x = Tπ1(w) and y = Tπ2(w). The T-category E = (E, k) is a
⊗-neutral object, where E is a singleton set and k the constant relation with value k ∈ V. Unlike in the
V-case, in general this does not result in a closed structure on T-Cat. However, as shown in [Hof07],
if a T-category X = (X, a) satisfies a · Tξa = a · mX , then X ⊗ : T-Cat −→ T-Cat has a right adjoint

X : T-Cat −→ T-Cat. Explicitly, for a T-category Y = (Y, b), the exponential X ( Y is given by the set

{ f : X −→ Y | f is a T-functor},

equipped with the structure-relation ~a, b� defined by

~a, b�(p, h) =
∨{

v ∈ V
∣∣∣∣ ∀q ∈ Tπ−1

2 (p), x ∈ X . a(Tπ1(q), x) ⊗ v ≤ b(Tev(q), h(x))
}
,

where p ∈ T (YX), h ∈ YX , π1 : X × (X ( Y) −→ X and π2 : X × (X ( Y) −→ YX . Using the adjunction
u ⊗ a u( in V, we see that

~a, b�(p, h) =
∧

q∈T (X×(X(Y)),x∈X
q7−→p

a(Tπ1(q), x)( b(Tev(q), h(x)).

Lemma 3.5. Let X = (X, a), Y = (Y, b) be T-categories with a · Tξa = a · mX and h, h′ ∈ (X ( Y). Then

~a, b�(eYX (h), h′) =
∧
x∈X

b(eY (h(x)), h′(x)).

3.4. T-modules. Let X = (X, a) and Y = (Y, b) be T-categories and ϕ : X −⇀7 Y be a T-relation. We
call ϕ a T-module, and write ϕ : X −⇀◦ Y , if ϕ ◦ a ≤ ϕ and b ◦ ϕ ≤ ϕ. Note that we always have
ϕ ◦ a ≥ ϕ and b ◦ ϕ ≥ ϕ, so that the T-module condition above actually implies equality. It is easy to
see that the extension as well as the lifting (if it exists) in T-URel of T-modules is again a T-module.
Furthermore, we have a : X −⇀◦ X for each T-category X = (X, a); in fact, a is the identity T-module on
X for the Kleisli convolution. The category of T-categories and T-modules, with Kleisli convolution as
composition is denoted by T-Mod. In fact, T-Mod is an ordered category, with the structure on hom-sets
inherited from T-URel.

Let now X = (X, a) and Y = (Y, b) be T-categories and f : X −→ Y be a Set-map. We define T-
relations f∗ : X −⇀7 Y and f ∗ : Y −⇀7 X by putting f∗ = b · T f and f ∗ = f ◦ · b respectively. Hence, for
x ∈ T X, y ∈ TY , x ∈ X and y ∈ Y , f∗(x, y) = b(T f (x), y) and f ∗(y, x) = b(y, f (x)). Given now T-modules
ϕ and ψ, we have

ϕ ◦ f∗ = ϕ · T f and f ∗ ◦ ψ = f ◦ · ψ.

The latter equality follows from

f ∗ ◦ ψ = f ◦ · b · Tξψ · m
◦
Z = f ◦ · ψ,

whereas the first equality follows from

ϕ ◦ f∗ = ϕ ◦ (b · T f ) = ϕ · Tξb · T
2 f · m◦X = ϕ · Tξb · m

◦
Y · T f = ϕ · T f .

In particular we have b ◦ f∗ = f∗ and f ∗ ◦ b = f ∗, as well as f∗ ◦ f ∗ = b · T f · T f ◦ · Tξb · m
◦
Y ≤ b. The

latter inequality becomes even an equality provided that f is surjective. As before, one easily verifies:

Proposition 3.6. The following assertions are equivalent for a Set-map f between T-categories:

(i) f : X −→ Y is a T-functor.
(ii) f∗ is a T-module f∗ : X −⇀◦ Y.
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(iii) f ∗ is a T-module f ∗ : Y −⇀◦ X.

As in the V-case, there are functors

T-Cat
(−)∗
−−−→ T-Mod

(−)∗
←−−− T-Catop.

We can transport the order on the hom-sets from T-Mod to T-Cat via the functor ( )∗ : T-Catop −→

T-Mod. That is, we can define f ≤ g if f ∗ ≤ g∗, or equivalently, if g∗ ≤ f∗. With this definition we turn
T-Cat into an ordered category. As usual, we call T-functors f , g : X −→ Y equivalent, and write f � g,
if f ≤ g and g ≤ f . Hence, f � g if and only if f ∗ = g∗, which in turn is equivalent to f∗ = g∗.

Lemma 3.7. Let f , g : X −→ Y be T-functors between T-categories X = (X, a) and Y = (Y, b). Then

f ≤ g ⇐⇒ ∀x ∈ X . k ≤ b(eY ( f (x)), g(x)).

Proof. If g∗ ≤ f∗, then

k ≤ g∗(eX(x), g(x)) ≤ f∗(eX(x), g(x)) = b(eY ( f (x)), g(x)).

On the other hand, if k ≤ b(eY (g(x)), f (x)) for each x ∈ X, then

f ∗(y, x) = b(y, f (x)) ≤ Tξb(eTY (y), eY ( f (x))) ⊗ b(eY ( f (x)), g(x)) ≤ b(y, g(x)) = g∗(y, x). �

In particular, for T-functors f , g : X −→ V, we have f ≤ g if and only if f (x) ≤ g(x) for all x ∈ X.
Assume now that X = (X, a), Y = (Y, b) and Z = (Z, c) are T-categories where a · Tξa = a · mX . By
combining the previous lemma with Lemma 3.5, we obtain f ≤ g ⇐⇒ pf q ≤ pgq for all T-functors
f , g : X ⊗ Y −→ Z, where pf q, pgq : Y −→ ZX .

3.5. Yoneda. Also T-modules give rise to T-functors, but in addition to Xop we must also take the T-
category |X| (see 3.3) into consideration.

Theorem 3.8 ([CH08]). For T-categories (X, a) and (Y, b), and a T-relation ψ : X −⇀7 Y, the following
assertions are equivalent:

(i) ψ : (X, a)−⇀◦ (Y, b) is a T-module.
(ii) Both ψ : |X| ⊗ Y −→ V and ψ : Xop ⊗ Y −→ V are T-functors.

Since we have a : X −⇀◦ X for each T-category X = (X, a), the theorem above provides us with two
T-functors

a : |X| ⊗ X −→ V and a : Xop ⊗ X −→ V.

We refer to the mate y = paq : X −→ (|X|( V) of the first T-functor as the Yoneda functor of X.

Theorem 3.9 ([CH08]). Let X = (X, a) be a T-category. Then the following assertions hold:

(1) For all x ∈ T X and ϕ ∈ (|X|( V), ~mX , homξ�(T y(x), ϕ) ≤ ϕ(x).
(2) Let ϕ ∈ (|X|( V). Then

∀x ∈ T X . ϕ(x) ≤ ~mX , homξ�(T y(x), ϕ) ⇐⇒ ϕ : Xop −→ V is a T-functor.

Consequentely, we put X̂ = (X̂, â) where

X̂ = {ψ ∈ (|X|( V) | ψ : Xop −→ V is a T-functor}

considered as a subcategory of |X| ( V, so that â is the restriction of ~mX , homξ� to X̂ (see Subsection
3.3). In particular, y : X −→ X̂ is full and faithful.
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Example 3.10. For X ∈ U2-Cat � Top, every ψ ∈ X̂ is the characteristic function of a Zariski-closed
and down-closed subset A ⊆ UX (see Examples 3.4). Using the ψ-A-exchange, we will now give an
alternative description of X̂, as the set F0(X) of (possibly improper) filters on the lattice τ of open sets of
X, in terms of the bijective maps

X̂
Φ
−−→ F0(X) and F0(X)

Π
−−→ X̂,

where Φ(A) =
⋂
A ∩ τ and Π(f) = {x ∈ UX | f ⊆ x}. Clearly, A = Π(f) is Zariski-closed. If x ≤ y for

some x ∈ UX and y ∈ A, then, for each A ∈ x and B ∈ f, one has

A ∩ B , ∅

which, since B is open, gives A ∩ B , ∅. Hence f ⊆ x, that is, x ∈ A. Furthermore, one easily proves
f = ΦΠ(f) and A ⊆ ΠΦ(A). On the other hand, for x ⊇

⋂
A ∩ τ and A ∈ x we have X \ A <

⋂
A, and

therefore X \ A < x for some x ∈ A, hence A ∈ x. Consequently, A ⊆
⋃
A and, sinceA is Zariski-closed,

x ≤ y for some y ∈ A. But A is also down-closed, hence x ∈ A. Similarly and, in fact, more easily one
can show that there are bijective maps

X̌
Φ′

−−−→ F1(X) and F1(X)
Π′

−−−→ X̌,

where X̌ = {A ⊆ UX | A is Zariski-closed and up-closed}, F1(X) is the set of all (possibly improper)
filters on the lattice σ of closed sets of X, Φ′(A) =

⋂
A∩ σ and Π′(f) = {x ∈ UX | f ⊆ x}. Furthermore,

for any Zariski-closedA ⊆ UX, its down-closure ↓A is Zariski-closed as well. To see this, let x ∈ cl(↓A).
Hence x ∈

⋃
↓A and therefore, for any A ∈ x, we have A ∈

⋃
A. The set

j = {B ⊆ X | ∀a ∈ A . B < a}.

is an ideal, and j ∩ {A | A ∈ x} = ∅. Hence, there is some y ∈ UX such that x ≤ y and j ∩ y = ∅. But the
latter fact gives us y ⊆

⋃
A, that is, y ∈ clA = A. We conclude x ∈ ↓A. Similarly one can show that

↑A is Zariski-closed for each Zariski-closed subsetA ⊆ UX (but now use x ∈ cl(↑A) ⇐⇒
⋂
↑A ⊆ x).

The topology of X̂ is the compact-open topology, which has as basic open sets

B(B, {0}) = {A ∈ X̂ | A ∩ B = ∅} (B ⊆ UX Zariski-closed).

Since B(B, {0}) = B(↑B, {0}), it is enough to consider Zariski-closed and up-closed subsets B ⊆ UX.
Hence, using the bijections X̂ � F0(X) and X̌ � F1(X), F0(X) has

{f ∈ F0(X) | ∃A ∈ f, B ∈ g . A ∩ B = ∅} (g ∈ F1(X))

as basic open sets. Clearly, it is enough to consider g =
�
B the principal filter induced by a closed set B,

so that all sets

{f ∈ F0(X) | ∃A ∈ f . A ∩ B = ∅} = {f ∈ F0(X) | X \ B ∈ f} (B ⊆ X closed)

form a basis for the topology on F0(X). But this is precisely the topology on F0(X) considered in [Esc97].

3.6. L-separation. We call a T-category X = (X, a) L-separated whenever, for every T-category Y , the
ordered set T-Cat(Y, X) is separated, that is: its preorder is anti-symmetric. The full subcategory of T-Cat
consisting of all L-separated T-categories is denoted by T-Catsep.

Proposition 3.11. Let X = (X, a) be a T-category. Then the following assertions are equivalent:

(i) X is L-separated.
(ii) x � y implies x = y, for all x, y ∈ X.

(iii) For all x, y ∈ X, if a(eX(x), y) ≥ k and a(eX(y), x) ≥ k, then x = y.
(iv) y : X −→ X̂ is injective.
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Proof. As for Proposition 1.5. �

Corollary 3.12. (1) The T-category V = (V, homξ) is separated.
(2) For all T-categories Y = (Y, b) and X = (X, a) where Y is L-separated and a · Tξa = a ·mX , YX is

L-separated. In particular, |X|( V is L-separated, for each T-category X.
(3) Any subcategory of an L-separated T-category is L-separated. In particular, X̂ is L-separated,

for every T-category X.

Examples 3.13. A topological space is L-separated if, and only if, it is T0. An approach space X = (X, d)
with distance function d : PX × X −→ P

+
is L-separated if and only if

d({x}, y) = 0 = d({y}, x) ⇒ x = y

for all x, y ∈ X.

3.7. L-completeness. As in 1.7, we call a T-category X = (X, a) L-complete if every adjunction ϕ a ψ
with ϕ : Z −⇀◦ X and ψ : X −⇀◦ Z is of the form f∗ a f ∗ for a T-functor f : Z −→ X. Of course, Up to
equivalence, f is uniquely determined by ϕ a ψ, and is indeed unique if X is L-separated. As before, it is
enough to consider Z = E (see also [CH08]).

Proposition 3.14. Let X = (X, a) be a T-category. The following assertions are equivalent:

(i) X is L-complete.
(ii) Each left adjoint T-module ϕ : E −⇀◦ X is of the form ϕ = x∗ for some x in X.

(iii) Each right adjoint T-module ψ : X −⇀◦ E is of the form ψ = x∗ for some x in X.

A topological space is L-complete precisely if it is weakly-sober, that is, if every irreducible closed set
is the closure of a point. A similar result holds for approach spaces: L-completeness is equivalent to the
condition that every irreducible closed variable set A be representable (see [CH08] for details). Further-
more, in both cases we obtain that L-complete and L-separated objects are precisely the fixed objects of
the dual adjunction between topological (approach) spaces and (approach) frames, with dualizing object
V = 2 (V = P

+
respectively; see [VO05] for details).

For a pair ψ : X −⇀◦ Y and ϕ : Y −⇀◦ X of adjoint T-modules ϕ a ψ, the same calculation as in 1.7
shows that ϕ = 1∗X � ψ. Since for each T-module ψ : X −⇀◦ Y one obtains (1∗X � ψ) ◦ ψ ≤ 1∗X , ψ is right
adjoint if and only if ψ ◦ (1∗X � ψ) ≥ (1Y )∗. Considering in particular Y = E, a T-module ψ : X −⇀◦ E is
right adjoint if, and only if,

k ≤
∨
x∈T X

ψ(x) ⊗ ξ · Tϕ(x)

where ϕ = 1∗X � ψ. Note that
∨
{ξ · Tψ(X) | X ∈ TT X,mX(X) = x} = ψ(x) since ψ : |X| −→ V is a

T-functor Hence, with the help of Lemma 3.5, we see that

ϕ(x) =
∧
x∈T X



∨
X∈TT X,
mX(X)=x

ξ · Tψ(X)

( a(x, x)


=
∧
x∈T X

(ψ(x)( a(x, x))

= â(eX̂(ψ), y(x)).

Lemma 3.15. Let ψ : X −⇀◦ E be a T-module and put ϕ = 1∗X � ψ. Then, for every x ∈ T X,

ξ · Tϕ(x) = Tξ â(eT X̂ · eX̂(ψ),T y(x)).
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Proof. Since ξ · Tϕ(x) = Tξϕ(x), one obtains the result by applying Tξ to the equality above. �

Hence, we now have:

Proposition 3.16. Let X = (X, a) be T-category. A T-module ψ : X −⇀◦ E is right adjoint if and only if

(†) k ≤
∨
x∈T X

ψ(x) ⊗ Tξ â(eT X̂ · eX̂(ψ),T y(x)).

Given a T-category X = (X, a), we call a T-functor ψ : |X| −→ V tight if ψ : Xop −→ V is a T-functor
and if, considered as a T-module ψ : X −⇀◦ E, it is right adjoint, that is, if it satisfies (†).

Example 3.17. For a topological space X and ψ ∈ X̂, as in Example 3.10 we can identify ψ with a
Zariski-closed and down-closed subsetA ⊆ UX, and then 1∗X � ψ with

A = {x ∈ X | ∀a ∈ A . a −→ x}.

Then ψ is tight if, and only if, there exists some a ∈ A with A ∈ a. Furthermore, under the bijection
X̂ � F0(X) (see Example 3.10), a tight map ψ corresponds to a filter f ∈ F0(X) with (Lim f) # f, where
Lim f denotes the set of all limit points of f, and where A # g if for all B ∈ f . A∩ B , ∅. Furthermore, for
each f ∈ F0(X) one has

(Lim f) # f ⇐⇒ f is completely prime,

that is: if
⋃

i∈I Ui ∈ f, then Ui ∈ f for some i ∈ I. In fact, if (Lim f) # f and
⋃

i∈I Ui ∈ f for some family
of open subsets of X, then (Lim f) ∩

⋃
i∈I Ui , ∅. Therefore, for some i ∈ I, Ui contains a limit point of

f. Hence Ui ∈ f. Conversely, assume that f is completely prime. Suppose that U ∈ f does not contain a
limit point of f. Then, for each x ∈ U, there is an open neiborhood Ux of x with Ux < f. But

⋃
x∈X Ux ∈ f

and, since f is completely prime, Ux ∈ f for some x ∈ U, a contradiction.

3.8. L-injectivity. The notions of L-dense T-functor, L-equivalence as well as L-injective T-category
can now be introduced as in 1.8. More precise, we call a T-functor f : (X, a) −→ (Y, b) L-dense if
f∗ ◦ f ∗ = 1∗X , which amounts to b ·T f ·T f ◦ ·Tξb ·m

◦
Y = b. L-dense T-functors have the same composition-

cancellation properties as V-functors (see 1.8). A fully faithful L-dense T-functor is an L-equivalence,
which can be equivalently expressed by saying that f∗ is an isomorphism in T-Mod. A T-category Z is
called pseudo-injective if, for all T-functors f : X −→ Z and fully faithful T-functors i : X −→ Y , there
exists a T-functor g : Y −→ Z such that g · i � f . Z is called L-injective if this extension property is only
required along L-equivalences i : X −→ Y . Of course, for an L-separated T-category Z, g · i � f implies
g · i = f , and then pseudo-injectivity coincides with the usual notion of injectivity. The following two
results can be proven as in 1.8.

Lemma 3.18. The T-category V is injective.

Proposition 3.19. For all T-categories Y = (Y, b) and X = (X, a) where Y is L-injective (pseudo-
injective) and a · Tξa = a · mX , YX is L-injective (pseudo-injective).

In particular, we obtain the injectivity of the T-category |X| ( V. Lateron we will see that X̂ and X̃
are also L-injective.

4. L-

4.1. L-dense T-functors. As in 2.1, L-dense T-functors can be characterized as “epimorphisms up to
�”. However, we will use here a different proof.
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Lemma 4.1. Let X = (X, a) be a T-category, M ⊆ X and i : M ↪→ X the embedding of M into X. Then i
is dense if, and only if,

(‡) k ≤
∨
a∈T M

a(a, x) ⊗ Tξa(TeX · eX(x), a)

for all x ∈ X.

Proof. Recall that i is L-dense whenever i∗ ◦ i∗ ≥ a, that is,

a(x, x) ≤
∨
a∈T M

∨
X∈TT X
mX(X)=x

a(a, x) ⊗ Tξa(X, a)

for all x ∈ T X and x ∈ X. If i is dense, then (‡) follows from the inequality above by putting x = eX(x)
and using m◦X · eX = eT X · eX (see Subsection 3.1). On the other hand, from (‡) we obtain

a(x, x) ≤
∨
a∈T M

a(a, x) ⊗ Tξa(TeX · eX(x), a) ⊗ a(x, x)

≤
∨
a∈T M

a(a, x) ⊗ TξTξa(eTT X · eT X(x), eT X · eX(x)) ⊗ Tξa(TeX · eX(x), a)

≤
∨
a∈T M

a(a, x) ⊗ Tξa(eT X(x), a)

≤
∨
a∈T M

∨
X∈TT X
mX(X)=x

a(a, x) ⊗ Tξa(X, a). �

Proposition 4.2. For a T-functor i : M −→ X, the following assertions are equivalent:

(i) i : M −→ X is L-dense.
(ii) For all T-functors f , g : X −→ Y, with f · i = g · i one has f � g.

(iii) For all T-functors f , g : X −→ V, with f · i = g · i one has f = g.

Proof. Assuming (i), so that i : M −→ X is L-dense, from f · i = g · i we obtain f∗ = g∗ and therefore
(ii) since i∗ ◦ i∗ = 1∗X . The implication (ii)⇒(iii) holds trivially since V is L-separated. Now assume (iii).
According to the remarks made above, we can assume that i : M −→ X is the embedding of a subset
M ⊆ X. For x ∈ X, First note that the map

ϕ : X −→ V, y 7−→ a(eX(x), y)

is a T-functor since a : |X| ⊗ X −→ V is one. Using the same argument as in [Hof07, Lemma 6.8], we
see that also

ψ : X −→ V, y 7−→
∨
x∈T M

Tξa(TeX · eX(x), x) ⊗ a(x, y)

is a T-functor. Clearly, for each y ∈ X we have ψ(y) ≤ ϕ(y). If y ∈ M, we can choose x = eX(y) ∈ T M
and therefore, using TeX · eX = eT X · eX and op-laxness of e, obtain ϕ(y) ≤ ψ(y). Hence ϕ|M = ψ|M, and
from our assumption (iii) we deduce k ≤ ϕ(x) = ψ(x). �

4.2. L-closure. For a T-category X = (X, a) and M ⊆ X, we define the L-closure of M in X by

M = {x ∈ X | ∀ f , g : X −→ Y . ( f |M = g|M ⇒ f (x) � g(x))}.

Hence M is the largest subset N of X making the inclusion map i : M ↪→ N dense.

Proposition 4.3. Let X = (X, a) be a T-category, M ⊆ X and x ∈ X. Then the following assertions are
equivalent.

(i) x ∈ M.
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(ii) k ≤
∨
x∈T M a(x, x) ⊗ Tξa(TeX · eX(x), x).

(iii) i∗ ◦ x∗ a x∗ ◦ i∗, where i : M ↪→ X is the inclusion map.
(iv) 1∗E ≤ x∗ ◦ i∗ ◦ i∗ ◦ x∗,
(v) i∗ ◦ x∗ a x∗ ◦ i∗.

(vi) x∗ : E−→◦ X factors through i∗ : M−→◦ X by a map ϕ : E−→◦ M in T-Mod.

Proof. Using Lemma 4.1 one can proceed as in Proposition 2.2. �

We can now proceed as in Subsection 2.2.

Proposition 4.4. For a T-functor f : X −→ Y and M,M′ ⊆ X, N ⊆ Y, one has:

(1) M ⊆ M and M ⊆ M′ implies M ⊆ M′.

(2) M = M and, if T∅ = ∅, then ∅ = ∅.
(3) f (M) ⊆ f (M) and f −1(N) ⊇ f −1(N).
(4) If k is ∨-irreducible and T preserves binary sums, then M ∪ M′ = M ∪ M′.

Corollary 4.5. If k is ∨-irreducible in V and T preserves finite sums, then the L-closure operator defines
a topology on X such that every T-functor becomes continuous. Hence, L-closure defines a functor
L : T-Cat −→ Top.

Example 4.6. For a topological space X, x ∈ X lies in the L-closure of A ⊆ X precisely if there exists
some ultrafilter x ∈ UA with x ∈ x and which converges to x; in other words, for every neighborhood U
of x we have U ∩ x ∩ A , ∅. Hence the L-closure of a topological space X coincides with the so called
b-closure [Bar68].

4.3. L-separation via the L-closure.

Proposition 4.7. Let X = (X, a) be a T-category and ∆ ⊆ X × X the diagonal. Then

∆ = {(x, y) ∈ X × X | x � y}.

Proof. As for Proposition 2.6. �

Corollary 4.8. A T-category X is L-separated if and only if the diagonal ∆ is closed in X × X.

Theorem 4.9. T-Catsep is an epi-reflective subcategory of T-Cat, where the reflection map is given by
y X : X −→ y X(X), for each T-category X. Hence, limits of L-separated T-categories are formed in T-Cat,
while colimits are obtained by reflecting the colimit formed in T-Cat. The epimorphisms in T-Catsep are
precisely the L-dense T-functors.

4.4. L-completeness via the L-closure.

Lemma 4.10. Let X = (X, a) be a T-category and M ⊆ X.

(1) Assume that X is L-complete and M be L-closed. Then M is L-complete.
(2) Assume that X is L-separated and M is L-complete. Then M is L-closed.

Proof. As for Lemma 2.9. �

Theorem 4.11. Let X = (X, b) be a T-category. The following assertions are equivalent.

(i) X is L-complete.
(ii) X is L-injective.

(iii) y : X −→ X̃ has a pseudo left-inverse T-functor R : X̃ −→ X, i.e. R · y � 1X .
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Proof. As for Theorem 2.10. �

Therefore we have that |X|( V is L-complete. Our next result shows that X̂ is also L-complete.

Proposition 4.12. X̂ is L-closed in |X|( V, for each T-category X.

Proof. Let X = (X, a) be a T-category and assume that ϕ ∈ (|X|( V) belongs to the closure of X̂, that is,

k ≤
∨
u∈T X̂

~mX , homξ�(u, ϕ) ⊗ Tξ~mX , homξ�(Te|X|(V · e|X|(V(ϕ), u).

We wish to show that r(x, y) ⊗ ϕ(y) ≤ ϕ(x) for all x, y ∈ T X, where r = Tξa · m
◦
X .

First note that, for all α, β ∈ (|X|( V),

e◦
|X|(V · ~mX , homξ�(α, β) =

∧
x∈T X

(α(x)( β(x)).

Hence, with hx : (|X| ( V)−→7 (|X| ( V), hx(α, β) = (α(x) ( β(x)), we have Te◦
|X|(V · Tξ~mX , homξ� ≤

Tξhx. Since the diagram

(|X|( V) × (|X|( V)
evx × evx //

hx
**UUUUUUUUUUUUUUUUUUUU V × V

(

��
V

commutes, and since in the diagram

T ((|X|( V) × (|X|( V))
T (evx × evx) //

can
��

T (V × V)
T (() //

can
��

≥

TV

ξ

��

T (|X|( V) × T (|X|( V)
T evx ×T evx

// TV × TV

ξ×ξ

��
V × V (

// V

the left hand rectangle commutes whereas in the right hand rectangle the “lower path” is greater or equal
to the “upper path”, we obtain

Tξhx(u, v) ≤ (u(x)( v(x))

for every x ∈ T X and u, v ∈ T (|X|( V), where u(x) = ξ · T evx(u). Accordingly, e|X|(V(ϕ)(x) = ϕ(x), and
we obtain

∀x ∈ T X . Tξ~mX , homξ�(Te|X|(V · e|X|(V(ϕ), u) ≤ (ϕ(x)( u(x)).

Furthermore, for all x, y ∈ T X one has

X̂

!
��

∆ //

≤

X̂ × X̂
evx × evy// V × V

(

��
1

r(x,y)
// V

and obtains

r(x, y) ≤ ξ · T (() · T (evx × evy) · T∆(u) ≤ (u(y)( u(x))
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for all u ∈ T X̂. We conclude that

r(x, y) ⊗ ϕ(y) ≤
∨
u∈T X̂

r(x, y) ⊗ ϕ(y) ⊗ ~mX , homξ�(u, ϕ) ⊗ Tξ~mX , homξ�(Te|X|(V · e|X|(V(ϕ), u)

≤
∨
u∈T X̂

r(x, y) ⊗ ϕ(y) ⊗ (ϕ(y)( u(y)) ⊗ ~mX , homξ�(u, ϕ)

≤
∨
u∈T X̂

r(x, y) ⊗ u(y) ⊗ ~mX , homξ�(u, ϕ)

≤
∨
u∈T X̂

u(x) ⊗ ~mX , homξ�(u, ϕ) ≤
∨
u∈T X̂

u(x) ⊗ (u(x)( ϕ(x)) ≤ ϕ(x). �

Proposition 4.13. Let X = (X, a) be a T-category and ψ ∈ X̂. Then ψ is a right adjoint T-module if and
only if ψ ∈ y(X).

Proof. By Proposition 3.16 and Theorem 3.9, ψ is right adjoint if, and only if,

k ≤
∨
x∈T X

â(T y(x), ψ) ⊗ Tξ â(TeX̂ · eX̂(ψ),T y(x)),

which means precisely that ψ ∈ y(X). �

The proposition above identifies X̃ as the L-closure of y(X) in X̂, and therefore as an L-complete
T-category. Furthermore, y : X −→ X̃ is fully faithful and L-dense. Hence we can state:

Theorem 4.14. The full subcategory T-Catcpl of T-Catsep of L-complete T-categories is an epi-reflective
subcategory of T-Catsep. The reflection map of an L-separated T-category X is given by any full L-dense
embedding of X into an L-complete and L-separated T-category, for instance by y : X −→ X̃.
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