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Abstract

For a complete cartesian-closed category V with coproducts, and for any pointed end-
ofunctor T of the category of sets satisfying a suitable Beck-Chevalley-type condition, it is
shown that the category of lax reflexive (T,V)-algebras is a quasitopos. This result encom-
passes many known and new examples of quasitopoi.
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0 Introduction

Failure to be cartesian closed is one of the main defects of the category of topological spaces. But
often this defect can be side-stepped by moving temporarily into the quasitopos hull of Top, the
category of pseudotopological (or Choquet) spaces, see for example [11, 14, 7]. A pseudotopology
on a set X is most easily described by a relation x → x between ultrafilters x on X and points
x in X, the only requirement for which is the reflexivity condition

•
x → x for all x ∈ X, with

•
x denoting the principal ultrafilter on x. In this setting, a topology on X is a pseudotopology
which satisfies the transitivity condition

X → y & y → z ⇒ m(X) → z

for all z ∈ X, y ∈ UX (the set of ultrafilters on X) and X ∈ UUX; here the relation →
between UX and X has been naturally extended to a relation between UUX and UX, and
m = mX : UUX → UX is the unique map that gives U together with eX(x) =

•
x the structure

of a monad U = (U, e,m). Barr [2] observed that the two conditions, reflexivity and transitivity,
are precisely the two basic laws of a lax Eilenberg-Moore algebra when one extends the Set-
monad U to a lax monad of Rel(Set), the category of sets with relations as morphisms. In
[9] Barr’s presentation of topological spaces was extended to include Lawvere’s presentation
of metric spaces as V-categories with V = R+, the extended real half-line. Thus, for any
symmetric monoidal category V with coproducts preserved by the tensor product, and for any
Set-monad T that suitably extends from Set-maps to all V-matrices (or “V-relations”, with
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ordinary relations appearing for V = 2, the two-element chain), the paper [9] develops the
notion of reflexive and transitive (T,V)-algebra, investigates the resulting category Alg(T,V),
and presents many examples, in particular Top = Alg(U,2).

The purpose of this paper is to show that dropping the transitivity condition leads us to a
quasitopos not only in the case of Top, but rather generally. In order to define just reflexive
(T,V)-algebras, one indeed needs neither the tensor product of V (just the “unit” object) nor
the “multiplication” of the monad T. Positively speaking then, we start off with a category
V with coproducts and a distinguished object I in V and any pointed endofunctor T of Set
and define the category Alg(T,V). Our main result says that when V is complete and locally
cartesian closed and a certain Beck-Chevalley condition is satisfied, also Alg(T,V) is locally
cartesian closed (Theorem 2.7).

Defining reflexive (T,V)-algebras for the “truncated” data T , V entails a considerable depar-
ture from [9], as it is no longer possible to talk about the bicategory Mat(V) of V-matrices. The
missing tensor product prevents us from being able to introduce the (horizontal) matrix compo-
sition; however, “whiskering” by Set-maps (considered as 1-cells in Mat(V)) is still well-defined
and well-behaved, and this is all that is needed in this paper.

We explain the relevant properties of Mat(V) in Section 1 and define the needed Beck-
Chevalley condition. Briefly, this condition says that the comparison map that “measures” the
extent to which the T -image of a pullback diagram in Set still is a pullback diagram must be a
lax epimorphism when considered a 1-cell in Mat(V). Having presented our main result, at the
end of Section 2 we show that this condition is equivalent to asking T to preserve pullbacks or, if
V is thin (i.e., a preordered class), to transform pullbacks into weak pullback diagrams (barring
trivial choices for I and V). In certain cases, (BC) turns out to be even a necessary condition
for local cartesian closedness of Alg(T,V), see 2.10. In Section 3 we show how to construct
limits and colimits in Alg(T,V) in general, and Section 4 presents the construction of partial
map classifiers, leading us to the theorem stated in the Abstract. A list of examples follows in
Section 5.

Acknowledgements. We dedicate this paper in great admiration to Nico Pumplün with whom
the third-named author started off studying Lawvere-Linton theories and monads in the late
sixties. The authors are also grateful to Ross Street and Richard Wood for pointing them to
their respective articles [15] and [3].

1 V-matrices

1.1 Let V be a category with coproducts and a distinguished object I. A V-matrix (or V-
relation) r from a set X to a set Y , denoted by r : X 9 Y , is a functor r : X × Y → V,
i.e. an X × Y -indexed family (r(x, y))x,y of objects in V. With X, Y fixed, such V-matrices
form the objects of a category Mat(V)(X,Y ), the morphisms ϕ : r → s of which are natural
transformations, i.e. families (ϕx,y : r(x, y) → s(x, y))x,y of morphisms in V; briefly,

Mat(V)(X,Y ) = VX×Y .
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1.2 Every Set-map f : X → Y may be considered as a V-matrix f : X 9 Y when one puts

f(x, y) =

{
I if f(x) = y,

0 else,

with 0 denoting a fixed initial object in V. This defines a functor

Set(X,Y ) // Mat(V)(X,Y ),

of the discrete category Set(X,Y ), and the question is: when do we obtain a full embedding,
for all X and Y ? Precisely when

(*) V(I, 0) = ∅ and |V(I, I)| = 1,

as one may easily check. In the context of a cartesian-closed category V, we usually pick for I
a terminal object 1 in V, and then condition (*) is equivalently expressed as

(**) 0 6∼= 1,

preventing V from being equivalent to the terminal category.

1.3 While in this paper we do not need the horizontal composition of V-matrices in general, we
do need the composites sf and gr for maps f : X → Y , g : Y → Z and V-relations r : X 9 Y ,
s : Y 9 Z, defined by

(sf)(x, z) = s(f(x), z),

(gr)(x, z) =
∑

y : g(y)=z

r(x, y),

for x ∈ X, z ∈ Z; likewise for morphisms ϕ : r → r′ and ψ : s → s′. Hence, we have the
“whiskering” functors

−f : Mat(V)(Y, Z) → Mat(V)(X,Z),

g− : Mat(V)(X,Y ) → Mat(V)(X,Z).

The horizontal composition with Set-maps from either side is associative up to coherent isomor-
phisms whenever defined; hence, if h : U → X and k : Z → V , then

(sf)h = s(fh) and k(gr) ∼= (kg)r.

Although Mat(V) falls short of being a bicategory, even a sesquicategory [15], we refer to sets
as 0-cells of Mat(V), V-matrices as its 1-cells, and natural transformations between them as its
2-cells.

1.4 The transpose r◦ : Y 9 X of a V-matrix r : X 9 Y is defined by r◦(y, x) = r(x, y) for all
x ∈ X, y ∈ Y . Obviously r◦◦ = r, and with

(sf)◦ = f◦s◦, (gr)◦ = r◦g◦
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we can also introduce whiskering by transposes of Set-maps from either side, also for 2-cells.
A Set-map f : X → Y gives rise to 2-cells

η : 1X → f◦f, ε : ff◦ → 1Y

satisfying the triangular identities (εf)(fη) = 1f , (f◦ε)(ηf◦) = 1f .

1.5 For a functor T : Set → Set, we denote by κ : TW → U the comparison map from the
T -image of the pullback W := Z ×Y X of (g, f) to the pullback U := TZ ×TZ TX of (Tg, Tf)

TW
Tk

""

Th

##

κ

$$H
H

H

U
π2 //

π1

��

TX

Tf

��
TZ

Tg // TY.

(1)

We say that the Set-functor T satisfies the Beck-Chevalley Condition (BC) if the 1-cell κ is a
lax epimorphism; that is, if the “whiskering” functor −κ : Mat(V)(TW,S) → Mat(V)(U, S) is
full and faithful, for every set S.

In the next section we will relate this condition with other known formulations of the Beck-
Chevalley condition.

2 Local cartesian closedness of Alg(T,V)

2.1 Let (T, e) be a pointed endofunctor of Set and V category with coproducts and a dis-
tinguished object I. A lax (reflexive) (T,V)-algebra (X, a, η) is given by a set X, a 1-cell
a : TX 9 X and a 2-cell η : 1X → aeX in Mat(V). The 2-cell η is completely determined by
the V-morphisms

ηx := ηx,x : I // a(eX(x), x),

x ∈ X. As we shall not change the notation for this 2-cell, we write (X, a) instead of (X, a, η).
A (lax) homomorphism (f, ϕ) : (X, a) → (Y, b) of (T,V)-algebras is given by a map f : X → Y

in Set and a 2-cell ϕ : fa→ b(Tf) which must preserve the units: (ϕeX)(fη) = ηf . The 2-cell
ϕ is completely determined by a family of V-morphisms

fx,x : a(x, x) // b(Tf(x), f(x)),

x ∈ X, x ∈ TX, and preservation of units now reads as feX(x),xηx = ηf(x) for all x ∈ X. For
simplicity, we write f instead of (f, ϕ), and when we write

fx,x : a(x, x) // b(y, y)

this automatically entails y = Tf(x) and y = f(x); these are the V-components of the homomor-
phism f . Composition of (f, ϕ) with (g, ψ) : (Y, b) → (Z, c) is defined by

(g, ψ)(f, ϕ) = (gf, (ψ(Tf))(gϕ))
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which, in the notation used more frequently, means

(gf)x,x = (a(x, x)
fx,x // b(y, y)

gy,y // c(z, z)).

We obtain the category Alg(T,V) (denoted by Alg(T, e;V) in [9]).

2.2 Let V be finitely complete. The pullback (W,d) of f : (X, a) → (Z, c) and g : (Y, b) → (Z, c)
in Alg(T,V) is constructed by the pullbackW = X×ZY in Set and a family of pullback diagrams
in V, as follows:

d(w, w)
f ′w,w //

g′w,w

��

b(y, y)

gy,y

��
a(x, x)

fx,x // c(z, z)

for all w ∈W ; hence,

d(w, w) = a(Tg′(w), g′(w))×c b(Tf ′(w), f ′(w))

in V, where g′ : W → X and f ′ : W → Y are the pullback projections in Set. For each
w = (x, y) in W , we define ηw :=< ηx, ηy >.

2.3 Every set X carries the discrete (T,V)-structure e◦X . In fact, the 2-cell η : 1X → e◦XeX

making (X, e◦X) a (T,V)-algebra is just the unit of the adjunction eX a e◦X in Mat(V). Now
X 7→ (X, e◦X) defines the left adjoint of the forgetful functor

Alg(T,V) // Set

since every map f : X → Y into a (T,V)-algebra (Y, b) becomes a homomorphism f : (X, e◦X) →
(Y, b); indeed the needed 2-cell fe◦X → b(Tf) is obtained from the unit 2-cell η : 1 → beY with
the adjunction eX a e◦X : it is the mate of fη : f → beY f = b(Tf)eX . In pointwise notation, for

fx,x : e◦X(x, x) // b(y, y)

one has fx,x = 1I if eX(x) = x; otherwise its domain is the initial object 0 of V, i.e. it is trivial.

2.4 We consider the discrete structure in particular on a one-element set 1. Then, for every
(T,V)-algebra (X, a), an element x ∈ X can be equivalently considered as a homomorphism
x : (1, e◦1) → (X, a) whose only non-trivial component is the unit ηx : I → a(eX(x), x).

2.5 Assume V to be complete and locally cartesian closed. For a homomorphism f : (X, a) →
(Y, b) and an additional (T,V)-algebra (Z, c) we form a substructure of the partial product of
the underlying Set-data (see [10]), namely

Z Q
evoo

f ′

��

q // X

f

��
P

p // Y,

(2)
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with
P = Zf = {(s, y) | y ∈ Y, s : (Xy, ay) → (Z, c)},

Q = Zf ×Y X = {(s, x) |x ∈ X, s : (Xf(x), af(x)) → (Z, c)},

where (Xy = f−1y, ay) is the domain of the pullback

iy : (Xy, ay) // (X, a)

of y : (1, e◦1) → (Y, b) along f . Of course, p and q are projections, and ev is the evaluation map.
We must find a structure d : TP 9 P which, together with a 2-cell η, will make these maps
morphisms in Alg(T,V).

For (s, y) ∈ P and p ∈ TP , in order to define d(p, (s, y)), consider each pair x ∈ X and
q ∈ TQ with f(x) = y and Tf ′(q) = p and form the partial product

c(z, s(x)) c(z, s(x))fx,x ×b a(x, x)
ẽvq,xoo

��

// a(x, x)

fx,x

��
c(z, s(x))fx,x

p̃q,x // b(y, y)

(3)

in V, where z = T ev(q), and then the multiple pullback d(p, (s, y)) of the morphisms p̃q,x in V,
as in:

c(z, s(x))fx,x

p̃q,x

&&MMMMMMMMMM

d(p, (s, y))

πq,x

77ooooooooooo

pp,(s,y)

// b(y, y).

2.6 We define the 2-cell η : 1P → deP componentwise. Let (s, y) ∈ P and consider each x ∈ X
and q ∈ TQ with f(x) = y and Tf ′(q) = eP (s, y) = T (s, y)e1 (where (s, y) : 1 → P ). Consider
the pullback jy : Xy → Q of (s, y) : 1 → P along f ′ in Set; whence, jy(x) = s(x). By (BC) there
is x ∈ TXy such that Tjy(x) = q and T !(x) = e1(∗) (where ! : Xy → 1 and ∗ is the only point of
1). Since evjy = s, we may form the diagram

c(z, s(x)) ay(x, x)
sx,xoo

��

(iy)x,x // a(x, x)

fx,x

��
I

ηy // b(eY (y), y)

in V, where z = T ev(q) = Ts(x), and the square is a pullback. The universal property of (3)
guarantees the existence of η̃q,x : I → c(z, s(x))fx,x such that p̃q,xη̃q,x = ηy and ẽvq,x(η̃q,x ×b 1) =
sx,x. Then, with the multiple pullback property, the morphisms η̃q,x define jointly η(s,y) : I →
d(eP (s, y), (s, y)).

2.7 Theorem. If the pointed Set-functor T satisfies (BC) and V is complete and locally carte-
sian closed, then also Alg(T,V) is locally cartesian closed.

Proof. Continuing in the notation of 2.5 and 2.6, we equip Q with the lax algebra structure
r : TQ 9 Q that makes the square of diagram (2) a pullback diagram in Alg(T,V). Then the
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2-cell defined by

r(q, (s, x))
πq,x×b1// c(z, s(x))fx,x ×b a(x, x)

ẽvq,x // c(z, s(x))

makes ev : (Q, r) → (Z, c) a homomorphism.
In order to prove the universal property of the partial product, given any other pair (h :

(L, u) → (Y, b), k : (M,v) → (Z, c)), where M := L ×Y X, we consider the map t : L → P ,
defined by t(l) := (sl, h(l)), with

((Xh(l), ah(l)))
sl // (Z, c)) = ((Xh(l), ah(l))

jl // (M,v) k // (Z, c)),

where jl is the pullback of l : (1, e◦1) → (L, u) along f ′′ : (M,v) → (L, u). We remark that in the
commutative diagram

Z Q
evoo q //

f ′��

X

f

��

M
k

__>>>>>
t′ ??�����

f ′′

��

Xh(l)

ih(l)

<<yyyyy
jloo

��

P
p // Y

L

t ==||||
1

l
oo h(l)

;;vvvvvv

every vertical face of the cube is a pullback in Set.
Now, for each l ∈ L and l ∈ L we define tl,l : u(l, l) → d(Tt(l), t(l)) componentwise. Since

evt′ = k we observe that Tk factors through the comparison map κ : TM → TL×TP TQ, defined
by the diagram

TM Tt′

''

Tf ′′

&&

κ
((PPPP

TL×TP TQ
π2 //

π1

��

TQ

Tf ′

��
TL

Tt // TP ;

that is Tk = (T ev)(Tt′) = (T ev)π2κ. Since also kv factors through κ, i.e., kv = kṽκ, with (BC)
we conclude that the 2-cell kv → c(Tk) is of the form

ϕ

��

M
κ // TL×TP TQ

kṽ

��

(T ev)π2

DDZ.

For each x ∈ X and q ∈ TQ such that f(x) = h(l) and Tf ′(q) = Tt(l), let m ∈ TM be such that
(Tf ′′)(m) = l and (Tt′)(m) = q. In the diagram

c(z, sl(x)) v(m, (l, x))
km,(l,x)oo

��

// a(x, x)

fx,x

��
u(l, l)

hl,l // b(y, y)
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in V one has z = (T ev)(q) and the morphism km,(l,x) depends only on q and l. Moreover,
the square is a pullback, hence there is a V-morphism t̃l,l : u(l, l) → c(z, sl(x))fx,x such that
p̃q,xt̃l,l = hl,l and km,(l,x)(t̃l,l ×b 1) = ẽvq,x. With the multiple pullback property, the morphisms
t̃l,l define the unique 2-cell that makes t : (L, u) → (P, d) a homomorphism. �

If in the proof we take for (Y, b) the terminal object of Alg(T,V), that is, the pair (1,>)
where the lax structure > is constantly equal to the terminal object of V, we conclude:

2.8 Corollary. If the pointed Set-functor T satisfies (BC) and V is complete and cartesian
closed, then also Alg(T,V) is cartesian closed.

We explain now the strength of our Beck-Chevalley condition.

2.9 Proposition. For T and V as in 1.5, let V(I, 0) = ∅. Then:

(a) If T satisfies (BC), then T transforms pullbacks into weak pullbacks. The two conditions
are actually equivalent when V is thin (i.e. a preordered class).

(b) If V is not thin, satisfaction of (BC) by T is equivalent to preservation of pullbacks by T .

(c) If V is cartesian closed, with I = 1 the terminal object, then T satisfies (BC) if and only
if (Tf)◦Tg = Tk(Th)◦, for every pullback diagram

W
k //

h
��

X

f
��

Z
g // Y

(4)

in Set.

Proof. (a) Let κ : TW → U be the comparison map of diagram (1). By (BC) the 2-cell
κη : κ → κκ◦κ is the image by −κ of a 2-cell σ : 1U → κκ◦. Hence, for each u ∈ U there is
a V-morphism I → κκ◦(u, u) =

∑
w∈TW :κ(w)=u

κ(w, u). Therefore the set {w ∈ TW |κ(w) = u}

cannot be empty, that is, κ is surjective.
If V is thin and κ is surjective, there is a (necessarily unique) 2-cell 1U → κκ◦. Then each

2-cell ψ : κr → κs induces a 2-cell ϕ : r → s defined by

r rσ // rκκ◦
ψκ◦ // sκκ◦

sε // s

whose image under −κ is necessarily ψ.

(b) If T preserves pullbacks, then κ is an isomorphism and (BC) holds.
Conversely, let T satisfy (BC) and let κ : TW → U be a comparison map as in (1). We

consider w0, w1 ∈ TW with κ(w0) = κ(w1) and V-morphisms α, β : v → v′ with α 6= β, and
define r : U×U → V by r(u, u′) = v and s : U×U → V by s(u, u′) = v′. The 2-cell ψ : rκ→ sκ,
with ψw,u = α if w = w0 and ψw,u = β elsewhere, factors through κ only if w0 = w1.

(c) For any commutative diagram (4) there is a 2-cell kh◦ → f◦g, defined by

kh◦
ηkh◦ // f◦fkh◦ = f◦ghh◦

f◦gε // f◦g,
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which is an identity morphism in case the diagram is a pullback.
If T satisfies (BC) and V is not thin, the equality Tk(Th)◦ = (Tf)◦Tg follows from (b). If

V is thin, then in the diagram (1) the 2-cell σ : 1 → κκ◦ considered in (a) gives rise to a 2-cell

(Tf)◦Tg = π2π
◦
1

π2σπ◦1 // π2κκ
◦π◦1 = Tk(Th)◦,

and the equality follows.
Conversely, the equality (Tf)◦Tg = Tk(Th)◦ guarantees the surjectivity of κ, hence (BC)

follows in case V is thin, by (a). If V is not thin, we first observe that a coproduct
∑
X

I is

isomorphic to I only if X is a singleton, due to the cartesian closedness of V. Now, (Tf)◦Tg =
Tk(Th)◦ means that, for every z ∈ TZ and x ∈ TX with Tg(z) = Tf(x),

I = Tf(x, T g(z)) = Tf◦Tg(z, x) = TkTh◦(z, x) =
∑

{I |w ∈ TW : Tk(w) = x & Th(w) = z}.

From this equality we conclude that there exists exactly one such w, i.e. TW = TZ×TY TX. �

2.10 Finally we remark that, in some circumstances, the 2-categorical part of (BC) is essential
for local cartesian-closedness of Alg(T,V). Indeed, if V is extensive [4], T transforms pullback
diagrams into weak pullback diagrams and Alg(T,V) is locally cartesian closed, then T satisfies
(BC), as we show next. To check (BC) we consider a 2-cell ψ : rκ→ sκ, with κ : TW → U the
comparison map of diagram (1) and r, s : U → S. We need to check that ψ = ϕκ for a unique
2-cell ϕ : r → s. This 2-cell exists, and it is unique if and only if

∀w0,w1 ∈ TW ∀s ∈ S κ(w0) = κ(w1) ⇒ ψw0,s = ψw1,s.

For v := r(κ(w0), s) and v′ := s(κ(w0), s), and α := ψw0,s and β = ψw1,s, we want to show that
α = β.

For that, in the pullback diagram (4) we consider structures a, b, c, d, on X, Y , Z and
W respectively, constantly equal to I + v, with η : I → I + v the coproduct injection. For d′

constantly equal to I + v′, in the diagram

(W,d′) (W,d)
(id,ε)oo

(h,1)

��

(k,1) // (X, a)

(f,1)

��
(Z, c)

(g,1) // (Y, b)

we define ε by:

εw,w =

{
1 + α if w = w0,

1 + β elsewhere.

The square is a pullback. Hence the morphism (id, ε) factors through the partial product via
t ×Y id, with t : Z → P . Since the 2-cell of t ×Y id is obtained by a pullback construction and
κ(w0) = κ(w1), its 2-cell “identifies” w0 and w1, hence εw0,w = εw1,w, that is, 1 + α = 1 + β.
Therefore α = β, by extensitivity of V.
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3 (Co)completeness of the category Alg(T,V)

3.1 We assume V to be complete and cocomplete. The construction of limits in Alg(T,V)
reduces to a combined construction of limits in Set and V, as we show next.

The limit of a functor

F : D → Alg(T,V)
D 7→ (FD, aD)

D
f→ E 7→ (FD, aD)

Ff→ (FE, aE)

is constructed in two steps.
First we consider the composition of F with the forgetful functor into Set

D
F // Alg(T,V) // Set, (5)

and construct its limit in Set

(L
pD

// FD)D∈D.

Then, we define the (T,V)-algebra structure a : TL 9 L, that is the map a : TX ×X → V,
pointwise. For every l ∈ TL and l ∈ L, we consider now the functor

Fl,l : D → V
D 7→ aD(TpD(l), pD(l))

D
f→ E 7→ aD(TpD(l), pD(l))

Ff
TpD(l),pD(l)// aE(TpE(l), pE(l))

and its limit in V

(a(l, l)
pD

l,l // aD(TpD(l), pD(l)))D∈D.

This equips pD : (L, a) → (FD, aD) with a 2-cell pDa→ aDTp
D.

By construction

(L, a)
pD

// (FD, aD) (6)

is a cone for F . To check that it is a limit, let

(Y, b)
gD

// (FD, aD)

be a cone for F . By construction of (L, pD), there exists a map t : Y → L such that pDt = gD

for each D ∈ D. For each y ∈ TY and y ∈ Y ,

b(y, y)
gD

y,y // aD(TpD(Tt(y)), pD(t(y)))

is a cone for the functor FTt(y),t(y). Hence, by construction of a(Tt(y), t(y)), there exists a unique
V-morphism ty,y making the diagram

a(Tt(y), t(y))
pD

y,y // aD(TpD(Tt(y)), pD(t(y)))

b(y, y)

ty,y

OO�
�
� gD

y,y

33hhhhhhhhhhhhhhhhhhhhhh
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commutative. These V-morphisms define pointwise the unique 2-cell gb→ pDa.
For each l ∈ L, ηl : I → a(eL(l), l) is the morphism induced by the cone

(ηDpD(l),pD(l) : I → aD(eFD(pD(l)), pD(l)))D∈D.

3.2 Cocompleteness. To construct the colimit of a functor F : D → Alg(T,V) we first proceed
analogously to the limit construction. That is, we form the colimit in Set

(FD iD // Q)D∈D

of the functor (5).
To construct the structure c : TQ 9 Q, for each q ∈ TQ and q ∈ Q, we consider the functor

F q,q : D → V, with

F q,q(D) =
∑

{aD(x, x) |TiD(x) = q, iD(x) = q},

and, for f : D → E, the morphism F q,q(f) : F q,q(D) → F q,q(E) is induced by

aD(x, x)
Ffx,x // aE(Tf(x), f(x)) // ∑ {aE(y, y) |TiE(y) = q, iE(y) = q} = F q,q(E).

and denote by c̃(q, q) the colimit of F q,q. If q 6= eQ(q) for q ∈ Q, then c̃(q, q) is in fact the
structure c(q, q) on the colimit. For q = eQ(q), the multiple pushout

c̃(eQ(q), q)

$$JJJJJJJJJJJJJJJ

aD(eFD(x), x)

iD
eFD(x),x 55kkkkkkk

I

ηx
88pppppppp ηq // c(eQ(q), q),

defines c(eQ(q), q), with D ∈ D and x ∈ FD such that iD(x) = q.

4 Representability of partial morphisms

4.1 Let S be a pullback-stable class of morphisms of a category C. An S-partial map from X

to Y is a pair ( X U
soo // Y ) where s ∈ S. We say that S has a classifier if there is a

morphism true : 1 → 1̃ in S such that every morphism in S is, in a unique way, a pullback of
true; C has S-partial map classifiers if, for every Y ∈ C, there is a morphism trueY : Y → Ỹ in
S such that every S-partial map ( X U

soo // Y ) from X to Y can be uniquely completed
so that the diagram

U

s

��

// Y

trueY

��
X //___ Ỹ .

is a pullback.

11



From Corollary 4.6 of [10] it follows that:

4.2 Proposition. If S is a pullback-stable class of morphisms in a finitely complete locally
cartesian-closed category C, then the following assertions are equivalent:

(i) S has a classifier;

(ii) C has S-partial map classifiers.

4.3 Our goal is to investigate whether the category Alg(T,V) has S-partial map classifiers, for
the class S of extremal monomorphisms. For that we first observe:

4.4 Lemma. An Alg(T,V)-morphism s : (U, c) → (X, a) is an extremal monomorphism if and
only if the map s : U → X is injective and, for each u ∈ TU and u ∈ U , su,u : c(u, u) → a(x, x)
is an isomorphism in V.

4.5 Proposition. In Alg(T,V) the class of extremal monomorphisms has a classifier.

Proof. For 1̃ = (1+1, >̃), where >̃ is pointwise terminal, we consider the inclusion true : 1 → 1̃
onto the first summand. For every extremal monomorphism s : (U, c) → (X, a), we define
χU : (X, a) → 1̃ with χU : X → 1 + 1 the characteristic map of s(U), and the 2-cell constantly
! : a(x, x) → 1. Then the diagram below

(U, s)

s

��

! // 1

true

��
(X, a)

χU // 1̃.

is a pullback diagram; it is in fact the unique possible diagram that presents s as a pullback of
true. �

Using Theorem 2.7 and Proposition 4.5, we conclude that:

4.6 Theorem. If the pointed Set-functor T satisfies (BC) and V is a complete and cocomplete
locally cartesian closed category, then Alg(T,V) is a quasitopos.

4.7 Remark. Representability of (extremal mono)-partial maps can also be proved directly,
and in this way one obtains a slight improvement of Theorem 4.6: Alg(T,V) is a quasi-topos
whenever T satisfies (BC) and V is a complete and cocomplete cartesian closed category, not
necessarily locally so.

5 Examples.

5.1 We start off with the trivial functor T which maps every set to a terminal object 1 of Set.
T preserves pullbacks. Choosing for I the top element of any (complete) lattice V we obtain
with Alg(T,V) nothing but the topos Set. This shows that local cartesian closedness of V is

12



not a necessary condition for local cartesian closedness of Alg(T,V). We also note that T does
not carry the structure of a monad.

If, for the same T , we choose V = Set, then Alg(T,Set) is the formal coproduct completion
of the category Set∗ of pointed sets, i.e. Alg(T,Set) ∼= Fam(Set∗).

5.2 Let T = Id, e = id. Considering for V as in [9] the two-element chain 2, the extended
half-line R+ = [0,∞] (with the natural order reversed), and the category Set, one obtains with
Alg(T,V) the category of

− sets with a reflexive relation

− sets with a fuzzy reflexive relation

− reflexive directed graphs,

respectively.
More generally, if we let TX = Xn for a non-negative integer n, with the same choices for

V one obtains

− sets with a reflexive (n+ 1)-ary relation

− sets with a fuzzy reflexive (n+ 1)-ary relation

− reflexive directed “multigraphs” given by sets of vertices and of edges, with an edge having
an ordered n-tuple of vertices as its source and a single edge as its target; reflexivity means
that there is a distinguished edge (x, · · · , x) → x for each vertex x.

Note that the case n = 0 encompasses Example 5.1.

5.3 For a fixed monoid M , let T belong to the monad T arising from the adjunction

SetM ⊥ // Set,oo

i.e. TX = M × X with eX(x) = (0, x), with 0 neutral in M (writing the composition in M

additively). T preserves pullbacks. The quasitopos Alg(T,Set) may be described as follows.
Its objects are “M -normed reflexive graphs”, given by a set X of vertices and sets a(x, y) of
edges from x to y which come with a “norm” vx,y : a(x, y) → M for all x, y ∈ X; there is a
distinguished edge 1x : x→ x with vx,x(1x) = 0. Morphisms must preserve the norm. Of course,
for trivial M we are back to directed graphs as in 5.2.

It is interesting to note that if one forms Alg(T,Set) for the (untruncted) monad T (see [9]),
then Alg(T,Set) is precisely the comma category Cat/M , where M is considered a one-object
category; its objects are categories which come with a norm function v for morphisms satisfying
v(gf) = v(g) + v(f) for composable morphisms f, g.

5.4 Let T = U be the ultrafilter functor, as mentioned in the Introduction. U transforms pull-
backs into weak pullback diagrams. Hence, for V = 2 we obtain with Alg(T,2) the quasitopos
of pseudotopological spaces, and for V = R+ the quasitopos of (what should be called) quasi-
approach spaces (see [9, 8]). If we choose for V the extensive category Set, then the resulting

13



category Alg(U,Set) is a rather naturally defined supercategory of the category of ultracategories
(as defined in [9]) but fails to be locally cartesian closed, according to 2.9(b) and 2.10.
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